Skip to main content
Log in

Nodally integrated thermomechanical RKPM: Part II—generalized thermoelasticity and hyperbolic finite-strain thermoplasticity

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this two-part paper, a stable and efficient nodally-integrated reproducing kernel particle method (RKPM) approach for solving the governing equations of generalized thermomechanical theories is developed. Part I investigated quadrature in the weak form using classical thermoelasticity as a model problem, and a stabilized and corrected nodal integration was proposed. In this sequel, these methods are developed for generalized thermoelasticity and generalized finite-strain plasticity theories of the hyperbolic type, which are more amenable to explicit time integration than the classical theories. Generalized thermomechanical models yield finite propagation of temperature, with a so-called second sound speed. Since this speed is not well characterized for common engineering materials and environments, equating the elastic wave speed with the second sound speed is investigated to obtain results close to classical thermoelasticity, which also yields a uniform critical time step. Implementation of the proposed nodally integrated RKPM for explicit analysis of finite-strain thermoplasticity is also described in detail. Several benchmark problems are solved to demonstrate the effectiveness of the proposed approach for thermomechanical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Abouelregal AE, Zenkour AM (2013) The effect of fractional thermoelasticity on a two-dimensional problem of a mode I crack in a rotating fiber-reinforced thermoelastic medium. Chin Phys B 22(10):108102

    Article  Google Scholar 

  2. Adam L, Ponthot J-P (2005) Thermomechanical modeling of metals at finite strains: first and mixed order finite elements. Int J Solids Struct 42(21–22):5615–5655

    Article  MATH  Google Scholar 

  3. Armero F, Simo JC (1993) A priori stability estimates and unconditionally stable product formula algorithms for nonlinear coupled thermoplasticity. Int J Plast 9(6):749–782

    Article  MATH  Google Scholar 

  4. Baek J, Chen J, Zhou G, Arnett K, Hillman M, Hegemier G, Hardesty S (in press) A semi-Lagrangian RKPM with node-based shock algorithm for explosive welding simulation. Comput Mech

  5. Bagri A, Taheri H, Eslami MR, Fariborz S (2006) Generalized coupled thermoelasticity of a layer. J Therm Stresses 29(4):359–370

    Article  Google Scholar 

  6. Bathe K-J (2006) Finite element procedures. Klaus-Jurgen Bathe, Berlin

    MATH  Google Scholar 

  7. Beni YT, Movahhedy MR (2010) Consistent arbitrary Lagrangian Eulerian formulation for large deformation thermo-mechanical analysis. Mater Des 31(8):3690–3702

    Article  Google Scholar 

  8. Camacho GT, Ortiz M (1997) Adaptive Lagrangian modelling of ballistic penetration of metallic targets. Comput Methods Appl Mech Eng 142(3–4):269–301

    Article  MATH  Google Scholar 

  9. Cattaneo C (1958) On a form of the heat equation eliminating the paradox of an instantaneous propagation. Account Render 247:431–433

    MATH  Google Scholar 

  10. Chen J, Dargush GF (1995) Boundary element method for dynamic poroelastic and thermoelastic analyses. Int J Solids Struct 32(15):2257–2278

    Article  MATH  Google Scholar 

  11. Chen J-S, Hillman M, Chi S-W (2016) Meshfree methods: progress made after 20 years. J Eng Mech

  12. Chen J-S, Hillman M, Rüter M (2013) An arbitrary order variationally consistent integration for Galerkin meshfree methods. Int J Numer Methods Eng 95(5):387–418

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen J-S, Liu WK, Hillman M, Chi SW, Lian Y, Bessa MA (2017) Reproducing Kernel approximation and discretization. In: Stein E, de Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics, 2nd edn. Wiley, Chichester

    Google Scholar 

  14. Chen J-S, Pan C, Roque C, Wang H-P (1998) A lagrangian reproducing kernel particle method for metal forming analysis. Comput Mech 22(3):289–307

    Article  MATH  Google Scholar 

  15. Chen J-S, Pan C, Wu C-T, Liu WK (1996) Reproducing Kernel Particle Methods for large deformation analysis of non-linear structures. Comput Methods Appl Mech Eng 139(1–4):195–227

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen J-S, Wu C-T, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 50(2):435–466

    Article  MATH  Google Scholar 

  17. Chen J-S, Wu Y (2007) Stability in Lagrangian and semi-Lagrangian reproducing kernel discretizations using nodal integration in nonlinear solid mechanics. In: Advances in meshfree techniques. Springer, pp 55–76

  18. Chen J-S, Yoon S, Wu C-T (2002) Non-linear version of stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 53(12):2587–2615

    Article  MATH  Google Scholar 

  19. Chen J-S, Zhang X, Belytschko T (2004) An implicit gradient model by a reproducing kernel strain regularization in strain localization problems. Comput Methods Appl Mech Eng 193(27–29):2827–2844

    Article  MATH  Google Scholar 

  20. Chester M (1963) Second sound in solids. Phys Rev 131(5):2013

    Article  Google Scholar 

  21. Danilouskaya V (1950) Thermal stresses in elastic half space due to sudden heating of its boundary. Pelageya Yakovlevna Kochina 14:316–321

    Google Scholar 

  22. Eringen AC (1980) Mechanics of continua. Robert E. Krieger Publishing Co., Huntington

    MATH  Google Scholar 

  23. Fan Z, Li B (2019) Meshfree simulations for additive manufacturing process of metals. Integr Mater Manuf Innov 8(2):144–153

    Article  Google Scholar 

  24. Green AE, Lindsay KA (1972) Thermoelasticity. J Elast 2(1):1–7

    Article  MATH  Google Scholar 

  25. Guan P-C, Chen J-S, Wu Y, Teng H, Gaidos J, Hofstetter K, Alsaleh M (2009) Semi-Lagrangian reproducing kernel formulation and application to modeling earth moving operations. Mech Mater 41(6):670–683

    Article  Google Scholar 

  26. Guan P-C, Chi S-W, Chen J-S, Slawson T, Roth MJ (2011) Semi-Lagrangian reproducing kernel particle method for fragment-impact problems. Int J Impact Eng 38(12):1033–1047

    Article  Google Scholar 

  27. Hillman M, Chen J-S (2016) An accelerated, convergent, and stable nodal integration in Galerkin meshfree methods for linear and nonlinear mechanics. Int J Numer Methods Eng 107:603–630

    Article  MathSciNet  MATH  Google Scholar 

  28. Hillman M, Chen J-S, Chi S-W (2014) Stabilized and variationally consistent nodal integration for meshfree modeling of impact problems. Comput Part Mech 1(3):245–256

    Article  Google Scholar 

  29. Hosseini SM, Sladek J, Sladek V (2011) Meshless local Petrov-Galerkin method for coupled thermoelasticity analysis of a functionally graded thick hollow cylinder. Eng Anal Bound Elem 35(6):827–835

    Article  MathSciNet  MATH  Google Scholar 

  30. Hosseini-Tehrani P, Eslami MR, Azari S (2006) Analysis of thermoelastic crack problems using Green-Lindsay Theory. J Therm Stresses 29(4):317–330

    Article  Google Scholar 

  31. Hughes TJ (2012) The finite element method: linear static and dynamic finite element analysis. Dover Publications Inc, Mineola

    Google Scholar 

  32. Hughes TJR, Winget J (1980) Finite rotation effects in numerical integration of rate constitutive equations arising in large deformation analysis. Int J Numer Methods Eng 15(12):1862–1867

    Article  MathSciNet  MATH  Google Scholar 

  33. Kouchakzadeh MA, Entezari A (2015) Analytical solution of classic coupled thermoelasticity problem in a rotating disk. J Therm Stresses 38(11):1267–1289

    Article  Google Scholar 

  34. Li B, Habbal F, Ortiz M (2010) Optimal transportation meshfree approximation schemes for fluid and plastic flows. Int J Numer Methods Eng 83(12):1541–1579

    Article  MathSciNet  MATH  Google Scholar 

  35. Li S, Liu WK (1998) Synchronized reproducing kernel interpolant via multiple wavelet expansion. Comput Mech 21:28–47

    Article  MathSciNet  MATH  Google Scholar 

  36. Li S, Liu WK (2002) Meshfree and particle methods and their applications. Appl Mech Rev 55(1):1–34

    Article  Google Scholar 

  37. Lindgren L-E (2006) Numerical modelling of welding. Comput Methods Appl Mech Eng 195(48):6710–6736

    Article  MATH  Google Scholar 

  38. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20(8–9):1081–1106

    Article  MathSciNet  MATH  Google Scholar 

  39. Lord HW, Shulman Y (1967) A generalized dynamical theory of thermoelasticity. J Mech Phys Solids 15(5):299–309

    Article  MATH  Google Scholar 

  40. Mallik SH, Kanoria M (2009) A unified generalized thermoelasticity formulation: application to penny-shaped crack analysis. J Therm Stresses 32(9):943–965

    Article  Google Scholar 

  41. Marusich TD, Ortiz M (1995) Modelling and simulation of high-speed machining. Int J Numer Methods Eng 38(21):3675–3694

    Article  MATH  Google Scholar 

  42. Norris DM Jr, Moran B, Scudder JK, Quinones DF (1978) A computer simulation of the tension test. J Mech Phys Solids 26(1):1–19

    Article  Google Scholar 

  43. Pan X, Wu CT, Hu W, Wu Y (2019) A momentum-consistent stabilization algorithm for Lagrangian particle methods in the thermo-mechanical friction drilling analysis. Comput Mech 64(3):625–644

    Article  MathSciNet  MATH  Google Scholar 

  44. Prevost J-H, Tao D (1983) Finite element analysis of dynamic coupled thermoelasticity problems with relaxation times. J Appl Mech 50(4a):817–822

    Article  MATH  Google Scholar 

  45. Puso MA, Zywicz E, Chen JS (2007) A new stabilized nodal integration approach. Lect Notes Comput Sci Eng 57:207–217

    Article  MathSciNet  MATH  Google Scholar 

  46. Seitz A, Wall WA, Popp A (2018) A computational approach for thermo-elasto-plastic frictional contact based on a monolithic formulation using non-smooth nonlinear complementarity functions. Adv Model Simul Eng Sci 5(1):5

    Article  Google Scholar 

  47. Sherief HH, El-Maghraby NM (2005) A mode-I crack problem for an infinite space in generalized thermoelasticity. J Therm Stresses 28(5):465–484

    Article  Google Scholar 

  48. Sherief HH, El-Maghraby NM, Allam AA (2013) Stochastic thermal shock problem in generalized thermoelasticity. Appl Math Model 37(3):762–775

    Article  MathSciNet  MATH  Google Scholar 

  49. Simkins DC, Li S (2006) Meshfree simulations of thermo-mechanical ductile fracture. Comput Mech 38(3):235–249

    Article  MATH  Google Scholar 

  50. Simo JC, Miehe C (1992) Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation. Comput Methods Appl Mech Eng 98(1):41–104

    Article  MATH  Google Scholar 

  51. Tehrani PH, Eslami MR (2000) Boundary element analysis of coupled thermoelasticity with relaxation times in finite domain. AIAA J 38(3):534–541

    Article  Google Scholar 

  52. Vernotte P (1958) Les paradoxes de la theorie continue de l’equation de la chaleur. Comptes rendus 246:3154–3155

    MATH  Google Scholar 

  53. Wang H, Liao H, Fan Z, Fan J, Stainier L, Li X, Li B (2020) The Hot Optimal Transportation Meshfree (HOTM) method for materials under extreme dynamic thermomechanical conditions. Comput Methods Appl Mech Eng 364:112958

    Article  MathSciNet  MATH  Google Scholar 

  54. Wu CT, Wu Y, Lyu D, Pan X, Hu W (2020) The momentum-consistent smoothed particle Galerkin (MC-SPG) method for simulating the extreme thread forming in the flow drill screw-driving process. Comput Part Mech 7(2):177–191

    Article  Google Scholar 

  55. Wu J, Wang D (2021) An accuracy analysis of Galerkin meshfree methods accounting for numerical integration. Comput Methods Appl Mech Eng 375:113631

    Article  MathSciNet  MATH  Google Scholar 

  56. Yang Q, Stainier L, Ortiz M (2006) A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids. J Mech Phys Solids 54(2):401–424

    Article  MathSciNet  MATH  Google Scholar 

  57. Yousefi H, Kani AT, Kani IM (2019) Multiscale RBF-based central high resolution schemes for simulation of generalized thermoelasticity problems. Front Struct Civil Eng 13(2):429–455

    Article  Google Scholar 

  58. Zamani A, Hetnarski RB, Eslami MR (2011) Second sound in a cracked layer based on Lord-Shulman theory. J Therm Stresses 34(3):181–200

    Article  Google Scholar 

Download references

Acknowledgements

Both authors greatly acknowledge the support of this work by Penn State, and the endowment of the L. Robert and Mary L. Kimball Early Career Professorship. The first author also acknowledges the support of the Missile Defence Agency through Karagozian and Case Inc. subcontract #PSU 190337.000. Proofing of this manuscript by Jennifer Dougal is also acknowledged and appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hillman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Small-strain thermoelasticity

With \(\eta ^p=0\), the Helmholtz free energy function (6) for thermoelasticity can be written as

$$\begin{aligned} \begin{aligned} \phi =e-\theta \eta \end{aligned} \end{aligned}$$
(97)

For small-strain thermoelasticity, the free energy function is a function of strain and the temperature \(\phi (\varvec{\varepsilon },\theta )\) with

$$\begin{aligned} \begin{aligned} \dot{\phi }(\varvec{\varepsilon },\theta )=\frac{\partial \phi }{\partial \varvec{\varepsilon }}\dot{\varvec{\varepsilon }}+\frac{\partial \phi }{\partial \theta }\dot{\theta }. \end{aligned} \end{aligned}$$
(98)

With the assumption (97) and (98), the dissipation inequality (2a) becomes

$$\begin{aligned} \begin{aligned} \Omega _{\text {thermech}}=(\frac{1}{\rho }\varvec{\sigma }-\frac{\partial \phi }{\partial \varvec{\varepsilon }}):\dot{\varvec{\varepsilon }}+(\eta +\frac{\partial \phi }{\partial \theta })\dot{\theta }\ge 0. \end{aligned} \end{aligned}$$
(99)

Which yields the constitutive relations

$$\begin{aligned} \begin{aligned} \eta =-\frac{\partial \phi }{\partial \theta } \end{aligned} \end{aligned}$$
(100)

and

$$\begin{aligned} \begin{aligned} \varvec{\sigma }=\rho \frac{\partial \phi }{\partial \varvec{\varepsilon }}. \end{aligned} \end{aligned}$$
(101)

Assuming \(\varvec{\varepsilon }=\varvec{0}\) and \(\theta =\theta _0\) in the reference state, (101) becomes

$$\begin{aligned} \begin{aligned}&\varvec{\sigma }=\varvec{D}:\varvec{\varepsilon }-\varvec{\beta }\theta ,\quad \text {or} \quad \varvec{\sigma }=\varvec{D}:(\varvec{\varepsilon }-\varvec{\alpha }\theta ),\\&\quad \,\text {or}\,\varvec{\sigma }=2\mu \text {dev}(\varvec{\varepsilon })+K \text {tr}(\varvec{\varepsilon })-3\alpha (\theta -\theta _0)\varvec{I}\end{aligned} \end{aligned}$$
(102)

where \(\varvec{\alpha }\) contains the thermal expansion coefficients, K is bulk modulus and

$$\begin{aligned} \varvec{D}&=\rho \frac{\partial ^2\phi }{\partial \varvec{\varepsilon }^2} , \end{aligned}$$
(103a)
$$\begin{aligned} \varvec{\beta }&=\varvec{D}:\varvec{\alpha }=-\rho \frac{\partial ^2\phi }{\partial \varvec{\varepsilon }\partial \theta } . \end{aligned}$$
(103b)

Also, the entropy for small strain can be expressed as

$$\begin{aligned} \begin{aligned} \eta (\varvec{\varepsilon },\theta )=-\frac{\partial \phi }{\partial \theta }=\left. \begin{array}{l}-\frac{\partial \phi }{\partial \theta }\end{array}\right| _0-\left. \begin{array}{l}\frac{\partial ^2\phi }{\partial {\varvec{\varepsilon }}\partial \theta }\end{array}\right| _0:{\varvec{\varepsilon }}-\left. \begin{array}{l}\frac{\partial ^2\phi }{\partial \theta _0^2}\end{array}\right| _0(\theta -\theta _0) \end{aligned} \end{aligned}$$
(104)

where \(|_0\) means that the quantity is evaluated at the reference state. With (100), (102), (103), and \(({\theta -\theta _0})/{\theta }\approx ({\theta -\theta _0})/{\theta _0}\), and The specific heat capacity is \(c_p=\theta \frac{\partial \eta }{\partial \theta }\approx \theta _0\frac{\partial \eta }{\partial \theta }\) the entropy (104) can be written as

$$\begin{aligned} \eta (\varvec{\varepsilon },\theta )&=\eta _0+\frac{3K\alpha }{\rho }\text {tr}(\varvec{\varepsilon })+\frac{\theta -\theta _0}{\theta _0}c_p, \end{aligned}$$
(105a)
$$\begin{aligned} \dot{\eta }(\varvec{\varepsilon },\theta )&=\frac{3K\alpha }{\rho }\text {tr}(\dot{\varvec{\varepsilon }})+\frac{\dot{\theta }}{\theta _0}c_p. \end{aligned}$$
(105b)

Substitution of (105b) and \(\beta =3K\alpha \) into (7) with Fourier’s law (14) yields

$$\begin{aligned} \begin{aligned} \rho c_p\frac{\theta }{\theta _0} \dot{\theta }+\theta \beta \text {tr}(\dot{\varvec{\varepsilon }})=k\nabla \cdot \nabla \theta +Q. \end{aligned} \end{aligned}$$
(106)

With the assumption \(\theta \approx \theta _0\), the energy equation becomes

$$\begin{aligned} \begin{aligned} \rho c_p \dot{\theta }+\theta _0\beta \text {tr}(\dot{\varvec{\varepsilon }})=k\nabla \cdot \nabla \theta +Q \end{aligned} \end{aligned}$$
(107)

which is the same as (12).

Appendix B: Finite-strain thermoplasticity

First, taking time derivative of the Helmholtz free energy function one obtains

$$\begin{aligned} \begin{aligned} \dot{\phi }=\dot{e}-\dot{\theta }\eta -\theta \dot{\eta }+\dot{\theta }\eta ^p+\theta \dot{\eta }^p. \end{aligned} \end{aligned}$$
(108)

With the assumption (108) and (40), the dissipation inequality (2a) becomes

$$\begin{aligned} \begin{aligned}&\Omega _{\text {thermech}}=\rho (\varvec{P}-\frac{\partial \phi ^e}{\partial \varvec{F}^e}\frac{\varvec{F}^e}{\varvec{F}}):\dot{\varvec{F}}+(-(\eta -\eta ^p)+\rho \frac{\partial \phi }{\partial \theta })\dot{\theta }\\&\quad +\rho \frac{\partial \phi ^e}{\partial \varvec{F}^e}\frac{\varvec{F}^e}{\varvec{F}^p}:\dot{\varvec{F}^p}+\rho \frac{\partial \phi ^p}{\partial \upsilon }\dot{\upsilon }+\theta \dot{\eta }^p\ge 0. \end{aligned} \end{aligned}$$
(109)

where \(\varvec{F}=\varvec{F}^e\varvec{F}^p\); \(\varvec{F}^e\) is the deformation gradient; \(\varvec{F}^e\) and \(\varvec{F}^p\) are the elastic and plastic part of the deformation gradient, respectively. Since \(\varvec{F}\), \(\dot{\varvec{F}}\), \(\theta \), and \(\dot{\theta }\) are arbitrary values, we obtain the constitutive relations of

$$\begin{aligned} \begin{aligned} \varvec{P}=\frac{\partial \phi }{\partial \varvec{F}^e}\frac{\partial \varvec{F}^e}{\partial \varvec{F}}, \quad \eta -\eta ^p=\rho \frac{\partial \phi }{\partial \theta } \end{aligned} \end{aligned}$$
(110)

where \(\varvec{P}\) is the first Piola-Kirchhoff stress.

Here we define (109) into two parts

$$\begin{aligned} \text {D}_{\text {mech}}=&\rho \frac{\partial \phi ^e}{\partial \varvec{F}^e}\frac{\varvec{F}^e}{\varvec{F}^p}:\dot{\varvec{F}^p}+\rho \frac{\partial \phi ^p}{\partial \upsilon }\dot{\upsilon }=\varvec{\Sigma }: \varvec{D}^p+\rho \frac{\partial \phi ^p}{\partial \upsilon }\dot{\upsilon }, \end{aligned}$$
(111a)
$$\begin{aligned} \text {D}_{\text {ther}}=&\theta \dot{\eta }^p \end{aligned}$$
(111b)

where \(\varvec{\Sigma }=2\varvec{C}^e\frac{\partial \phi ^e}{\partial \varvec{C}^e}\) is the Mandel stress tensor; \(\varvec{C}=\varvec{F}^T \varvec{F}\) denotes the right Cauchy-Green tensor and \(\varvec{C}^e\) is the elastic part, and \(\varvec{D}^p=\text {sym}(\dot{\varvec{F}}^p \varvec{F}^{p-1})\) is the symetric part of the plastic velocity gradient. Substitution (108), (42) , and (111) into (7) with the Fourier’s law (4) yields

$$\begin{aligned} \begin{aligned} \rho c_p \dot{\theta }=k\nabla \cdot \nabla \theta +Q+\text {D}_{\text {mech}}+\theta \frac{\partial (\varvec{P}:{\dot{\varvec{F}}}-\text {D}_{\text {mech}})}{\partial \theta } \end{aligned} \end{aligned}$$
(112)

where the last term is the elasto-plastic heating.

The simplification can be written with a dissipation factor \(\chi \) and \(\text {D}_{\text {mech}}-\theta \frac{\partial \text {D}_{\text {mech}}}{\partial \theta }\) replaced with the total plastic power \(\dot{w}^p\)

$$\begin{aligned} \begin{aligned} \rho c_p \dot{\theta }=k\nabla \cdot \nabla \theta +Q+\theta \frac{\partial (\varvec{P}:{\dot{\varvec{F}}})}{\partial \theta }+\chi \dot{w}^p. \end{aligned} \end{aligned}$$
(113)

In applications of metal thermoplasticity, the plastic dissipation is much greater than thermoelastic heating. Therefore, we rewrite the energy equation neglecting the thermoelastic heating

$$\begin{aligned} \begin{aligned} \rho c_p \dot{\theta }=k\nabla \cdot \nabla \theta +Q+\chi \dot{w}^p \end{aligned} \end{aligned}$$

which is (43).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hillman, M., Lin, KC. Nodally integrated thermomechanical RKPM: Part II—generalized thermoelasticity and hyperbolic finite-strain thermoplasticity . Comput Mech 68, 821–844 (2021). https://doi.org/10.1007/s00466-021-02048-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-021-02048-8

Keywords

Navigation