Skip to main content
Log in

Thermal effects of the zig-zag Yb:YAG slab laser with composite crystals

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A new slab configuration is designed based on the traditional Yb:YAG Total-Reflection Active-Mirror (TRAM) slab laser. The grad-doping method is proposed to improve the pump uniformity of the gain medium. A thermal analysis model is established by the ray-tracing software and finite element method. The thermal effects of the uniform doping medium and gradient doping medium are investigated according to the model, respectively. It shows that the maximum temperature and stress decrease obviously by the grad-doping method. A method based on ray-tracing is proposed to evaluate the thermal lensing effect and spherical aberration effect, and it is also suitable for other gain mediums with complex structures. The results indicate that the gain medium has less thermal effect and better beam quality by the grad-doping method. The TRAM slab with gradient doping concentration is also a promising configuration to obtain higher power output.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.C. Pouncey, J.M. Lehr, IEEE. Trans. Plasma. Sci. 48, 2175–2179 (2020)

    Article  ADS  Google Scholar 

  2. M. Jung, T. Riesbeck, J. Schmitz, T. Baumgartel, K. Ludewigt, A. Graf, Proc. SPIE. 10254, 1025416 (2017)

    Article  Google Scholar 

  3. W. Koechner, Solid-State Laser Engineering, 2nd ed. (Springer, 1988).

  4. W.A. Clarkson, J. Phys. D, Appl. Phys. 34, 2381 (2001)

    Article  ADS  Google Scholar 

  5. A. K. Sridharan, R. L. Byer, and S. Saraf, in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper TuB15.

  6. D. Cheng, X. Hu, H. Lei, Y. Hui, M. Jiang, Q. Li, Opt. Commun. 451, 307–310 (2019)

    Article  ADS  Google Scholar 

  7. J. P. Chernoch, and W. S. Martin, U.S. patent 3,633,126 (1972).

  8. W. P. Latham, A. Lobad, T. C. Newell, and D. Stalnaker, in Proceedings of the International Symposium on High Power Laser Ablation, C. R. Phipps, ed. (Santa Fe, 2010).

  9. H. Furuse, J. Kawanaka, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, K. Takeshita, S. Ishii, Y. Izawa, Opt. Express. 19, 2448–2455 (2011)

    Article  ADS  Google Scholar 

  10. F. Hiroaki, K. Junji, T. Kenji, M. Noriaki, S. Taku, I. Kazuo, F. Masayuki, I. Shinya, Opt. Lett. 34, 3439–3441 (2009)

    Article  Google Scholar 

  11. P. Ferrara, M. Ciofini, L. Esposito, J. Hostaša, L. Labate, A. Lapucci, A. Pirri, G. Toci, M. Vannini, L.A. Gizzi, Opt. Express. 22, 5375–5386 (2014)

    Article  ADS  Google Scholar 

  12. Y. Lang, J.G. Xin, K. Alameh, Z.W. Fan, Y.Z. Chen, W.Q. Ge, H.B. Zhang, L.F. Liao, Appl. Phys. B 123, 231 (2017)

    Article  ADS  Google Scholar 

  13. T. Funatsu, N. Sato, Y. Sato, T. Okamoto, M. Murahara, Mater. Res. Soc. Symp. Proc. 890, 890–898 (2005)

    Article  Google Scholar 

  14. Q. Liu, X. Fu, M. Gong, L. Huang, J. Opt. Soc. Am. B. 24, 2081 (2007)

    Article  ADS  Google Scholar 

  15. C. Goren, Y. Tzuk, G. Marcus, S. Pearl, IEEE J. Quantum Electron. 42, 1239–1247 (2006)

    Article  ADS  Google Scholar 

  16. H. Furuse, H. Chosrowjan, J. Kawanaka, N. Miyanaga, M. Fujita, Y. Izawa, Opt. Express 21, 13118–13124 (2013)

    Article  ADS  Google Scholar 

  17. B. Chen, Y. Chen, M. Bass, IEEE J. Quantum Electron. 42, 483–489 (2006)

    Article  ADS  Google Scholar 

  18. G. Zhu, X. Zhu, M. Wang, Y. Feng, C. Zhu, Appl. Opt. 53, 6756–6764 (2014)

    Article  ADS  Google Scholar 

  19. T. Kane, J. Eggleston, R. Byer, IEEE J. Quantum Electron. 21, 1195–1210 (1985)

    Article  ADS  Google Scholar 

  20. M. Zhe, D. Li, J. Gao, N. Wu, K. Du, Opt. Commun. 275, 179–185 (2007)

    Article  ADS  Google Scholar 

  21. Y. Wang, Q. Wang, Q. Na, Y. Zhang, M. Gao, M. Zhang, Proc. SPIE 10619, 1061906 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2017YFB0405203), and the major project of Beijing Municipal Commission of Science and Technology (Z1911000020119003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunqing Gao.

Ethics declarations

Competing interestS

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Fu, S., Zhang, K. et al. Thermal effects of the zig-zag Yb:YAG slab laser with composite crystals. Appl. Phys. B 127, 121 (2021). https://doi.org/10.1007/s00340-021-07668-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07668-9

Keyword

Navigation