Skip to main content
Log in

Influence of Deteriorated Bentonite Sediments on the Corrosion Behavior of NiCu Low Alloy Steel

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The corrosion evolution of steel disposal container largely depends on the evolution of surrounding bentonite environment in the long-term geological disposal of high-level radioactive wastes. This study focused on the influence of the deteriorated bentonite sediments on the corrosion behavior of NiCu low alloy steel in the top supernatant and bottom slurry formed by Gaomiaozi bentonite and 0.05 M NaHCO3 + 0.1 M NaCl + 0.1 M Na2SO4 solution. In the top supernatant, the cathodic process of the steel corrosion was transformed from the reduction in oxygen to the reduction in ferric corrosion products with time as same as that in the blank solution. While in the bottom bentonite slurry, the cathodic process always maintained as the hydrogen evolution reaction due to the coverage of more bentonite sediments. Meanwhile, the corrosion rate of NiCu steel was obviously decreased. In addition, the localized corrosion tendency of the steel could also be reduced by the large amount of deteriorated bentonite sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.E. Campbell, R.M. Cranwell, Science 239, 1389 (1988)

    Article  CAS  Google Scholar 

  2. J. Wang, L. Chen, R. Su, X.G. Zhao, J. Rock Mech. Geotech. Eng. 10, 411 (2018)

    Article  CAS  Google Scholar 

  3. N. Rigonat, O. Isnard, S.L. Harley, I.B. Butler, J. Hazard. Mater. 341, 28 (2018)

    Article  CAS  Google Scholar 

  4. X. Wei, Y.M. Liu, J.H. Dong, S.F. Cao, J.L. Xie, N. Chen, F. Xue, C.G. Wang, W. Ke, Appl. Clay Sci. 167, 23 (2019)

    Article  CAS  Google Scholar 

  5. F.A. Martin, C. Bataillon, M.L. Schlegel, J. Nucl. Mater. 379, 80 (2008)

    Article  CAS  Google Scholar 

  6. F. King, Corrosion 69, 986 (2013)

    Article  CAS  Google Scholar 

  7. Y.F. Lu, J.H. Dong, W. Ke, J. Mater. Sci. Technol. 32, 341 (2016)

    Article  CAS  Google Scholar 

  8. Y.F. Lu, J.H. Dong, W. Ke, J. Mater. Sci. Technol. 31, 1047 (2015)

    Article  CAS  Google Scholar 

  9. H. Kihira, M. Kimura, Corrosion 67, 095002–095011 (2011)

    Article  Google Scholar 

  10. W.M. Ye, Y.G. Chen, B. Chen, Q. Wang, J. Wang, Eng. Geol. 116, 12 (2010)

    Article  Google Scholar 

  11. N.R. Smart, B. Reddy, A.P. Rance, D.J. Nixon, N. Diomidis, Corros. Eng. Sci. Technol. 52, 113 (2017)

    Article  CAS  Google Scholar 

  12. H.Y. Zhang, Y. Tan, F. Zhu, D.J. He, J.H. Zhu, Constr. Build. Mater. 224, 78 (2019)

    Article  CAS  Google Scholar 

  13. Y.G. Chen, X.X. Dong, X.D. Zhang, W.M. Ye, Y.J. Cui, Appl. Clay Sci. 166, 318 (2018)

    Article  CAS  Google Scholar 

  14. R. Sjöblom, H. Bjurström, R. Pusch, Appl. Clay Sci. 23, 187 (2003)

    Article  CAS  Google Scholar 

  15. S. Saba, A.M. Tang, Y.J. Cui, J.D. Barnichon, Swelling of Highly Compacted Bentonite-Sand Mixtures Used as Sealing Materials in Radioactive Waste Disposal (Springer, Berlin Heidelberg, 2012)

    Book  Google Scholar 

  16. F. King, Mater. Res. Soc. Symp. Proc. 2623, 1475 (2012)

    Google Scholar 

  17. F. Cattant, D. Crusset, D. Féron, Mater. Today 11, 32 (2008)

    Article  CAS  Google Scholar 

  18. A. Honda, T. Teshima, K. Tsurudome, H. Ishikawa, Y. Yusa, N. Sasaki, Mater. Res. Soc. Symp. Proc. 212, 287 (1990)

    Article  Google Scholar 

  19. S. Kaufhold, A.W. Hassel, D. Sanders, R. Dohrmann, J. Hazard. Mater. 285, 464 (2015)

    Article  CAS  Google Scholar 

  20. G.P. Marsh, K.J. Taylor, I.D. Bland, C. Westcott, P.W. Tasker, S.M. Sharland, Mater. Res. Soc. Symp. Proc. 50, 421 (1985)

    Article  Google Scholar 

  21. Andra, Evaluation de la faisabilité du stockage géologique en formation argileuse. Chatenay-Malabry, France (2005)

  22. M.L. Schlegel, S. Necib, S. Daumas, M. Labat, C. Blanc, E. Foy, Corros. Sci. 136, 70 (2018)

    Article  CAS  Google Scholar 

  23. H.Y. Zhang, X.W. Wang, P. Liu, M. Yan, Y. Peng, Chin. J. Rock Mech. Eng. A02, 3605 (2016)

    Google Scholar 

  24. S. García-García, S. Wold, M. Jonsson, Appl. Clay Sci. 43, 21 (2009)

    Article  CAS  Google Scholar 

  25. G. Ritvo, O. Dassa, M. Kochba, Aquaculture 218, 379 (2003)

    Article  Google Scholar 

  26. H.B. Min, S.Y. Lee, J. Ind. Eng. Chem. 16, 837 (2010)

    Article  CAS  Google Scholar 

  27. G. Montes-H, N. Marty, B. Fritz, A. Clement, N. Michau, Appl. Clay Sci. 30, 181 (2005)

    Article  CAS  Google Scholar 

  28. L. Carlson, O. Karnland, V.M. Oversby, A.P. Rance, N.R. Smart, M. Snellman, M. Vähänen, L.O. Werme, Phys. Chem. Earth 32, 334 (2007)

    Article  Google Scholar 

  29. O. Bildstein, L. Trotignon, M. Perronnet, M. Jullien, Phys. Chem. Earth 31, 618 (2006)

    Article  Google Scholar 

  30. M. Jeannin, D. Calonnec, R. Sabot, P. Refait, Electrochim. Acta 56, 1466 (2011)

    Article  CAS  Google Scholar 

  31. M. Jeannin, D. Calonnec, R. Sabot, P. Refait, Corros. Sci. 52, 2026 (2010)

    Article  CAS  Google Scholar 

  32. X. Wei, J.H. Dong, N. Chen, A.P. Yadav, Q.Y. Ren, J. Wei, C.G. Wang, R.Y. Ma, W. Ke, J. Mater. Sci. Technol. 66, 46 (2021)

    Article  CAS  Google Scholar 

  33. L. Chen, Y.M. Liu, J. Wang, S.F. Cao, J.L. Xie, L.K. Ma, X.G. Zhao, Y.W. Li, J. Liu, Eng. Geol. 172, 57 (2014)

    Article  Google Scholar 

  34. F. Xue, X. Wei, J.H. Dong, C.G. Wang, W. Ke, J. Mater. Sci. Technol. 35, 596 (2019)

    Article  CAS  Google Scholar 

  35. F. Xue, X. Wei, J.H. Dong, I.N. Etim, C.G. Wang, W. Ke, J. Mater. Sci. Technol. 34, 1349 (2018)

    Article  CAS  Google Scholar 

  36. Y.F. Lu, J.H. Dong, W. Ke, Acta Metall. Sin. 51, 1067 (2015)

    CAS  Google Scholar 

  37. K. Indira, T. Nishimura, Trans. Indian Inst. Met. 70, 2347 (2017)

    Article  CAS  Google Scholar 

  38. K. Indira, T. Nishimura, J. Bio Tribo Corros. 3, 28 (2017)

    Article  Google Scholar 

  39. Q.K. Lu, L.W. Wang, J.C. Xin, H.Y. Tian, X. Wang, Z.Y. Cui, Constr. Build. Mater. 238, 117763 (2020)

    Article  CAS  Google Scholar 

  40. L.W. Wang, J.M. Liang, H. Li, L.J. Cheng, Z.Y. Cui, Corros. Sci. 178, 109076 (2021)

    Article  CAS  Google Scholar 

  41. M. Alizadeh, S. Bordbar, Corros. Sci. 70, 170 (2013)

    Article  CAS  Google Scholar 

  42. E. Mccafferty, Corros. Sci. 45, 1421 (2003)

    Article  CAS  Google Scholar 

  43. K. Idemitsu, S. Yano, X.B. Xia, Y. Inagaki, T. Arima, T. Mitsugashira, M. Hara, Y. Suzuki, Mater. Res. Soc. Symp. Proc. 713, 113 (2002)

    Article  CAS  Google Scholar 

  44. N.R. Smart, A.P. Rance, L. Carlson, L.O. Werme, Mater. Res. Soc. Symp. Proc. 932, 321 (2006)

    Article  Google Scholar 

  45. B.W.A. Sherar, P.G. Keech, Z. Qin, F. King, D.W. Shoesmith, Corrosion 66, 205 (2010)

    Article  Google Scholar 

  46. G.S. Pokrovski, J. Schott, F. Farges, J.L. Hazemann, Geochim. Cosmochim. Ac. 67, 3559 (2003)

    Article  CAS  Google Scholar 

  47. R.K. Vempati, Clay Clay Miner. 37, 273 (1989)

    Article  CAS  Google Scholar 

  48. S.H. Drissi, P. Refait, M. Abdelmoula, J.M.R. Genin, Corros. Sci. 37, 2025 (1995)

    Article  CAS  Google Scholar 

  49. S. Kaufhold, R. Dohrmann, K. Ufer, F.M. Meyer, Appl. Clay Sci. 22, 145 (2003)

    Article  Google Scholar 

  50. J.R. Carter, M.T. Hatcher, L.D. Carlo, Anal. Chem. 59, 513 (1987)

    Article  CAS  Google Scholar 

  51. S.M. Yaakob, M.C. Ismail, Adv. Mater. Res. 789, 507 (2013)

    Article  CAS  Google Scholar 

  52. F. Farelas, M. Galicia, B. Brown, S. Nesic, H. Castaneda, Corros. Sci. 52, 509 (2010)

    Article  CAS  Google Scholar 

  53. F. Mansfeld, J. Electrochem. Soc. 135, 906 (1988)

    Article  CAS  Google Scholar 

  54. C.N. Cao, J.Q. Zhang, An Introduction of Electrochemical Impedance Spectroscopy Science (Science Press, Beijing, 2002)

    Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Nos. U1867216, 51701222 and 51471175).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhua Dong.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Dong, J., Sun, Y. et al. Influence of Deteriorated Bentonite Sediments on the Corrosion Behavior of NiCu Low Alloy Steel. Acta Metall. Sin. (Engl. Lett.) 35, 1011–1022 (2022). https://doi.org/10.1007/s40195-021-01278-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-021-01278-2

Keywords

Navigation