Skip to main content
Log in

Naphtha as a Fuel for Internal Combustion Engines

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

Naphtha is a product obtained in the gasoline boiling range from different refinery components. Because naphtha is a less processed product of a refinery, its well-to-tank CO2 is lower than that of conventional gasoline or diesel. In addition, naphtha features a longer ignition delay than that of diesel fuel and better auto-ignition characteristics than those of gasoline fuel. Therefore, naphtha has gained significant attention as a fuel suitable for advanced combustion strategies that exhibit a substantial potential in improving the thermal efficiency and reducing exhaust gas emissions. Moreover, using naphtha for engines can reduce imbalanced gasoline and diesel fuels, compared with the proportions of a typical barrel of crude oil. As mentioned previously, naphtha is an attractive fuel for internal combustion engines because of its lower refining costs and CO2, suitability for advanced combustion strategies, and it is a solution for gasoline and diesel imbalance. Therefore, this study focuses on the application of naphtha to internal combustion engines. First, early naphtha studies and a naphtha engine are introduced. Subsequently, advanced combustion strategies based on naphtha are discussed, and few other studies based on naphtha are introduced. Simulation models for predicting the characteristics of naphtha are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

aTDC:

after top dead center

BMEP:

break mean effective pressure

CA:

crank angle

CA10:

10 % burn location

CA50:

50 % burn location

CAD:

crank angle degree

CFD:

computational fluid dynamics

CI:

compression ignition

CR:

compression ratio

CSL:

combustion sound level

DCN:

derived cetane number

EGR:

exhaust gas recirculation

ETBE:

ethyl tertiary-butyl ether

FTP:

federal test procedure

GCI:

gasoline compression ignition

GDI:

gasoline direct injection

GHG:

greenhouse gas

HCCI:

homogeneous charge compression ignition

HFR:

hydraulic flow rate

HN:

heavy naphtha

HSRN:

Haltermann straight run naphtha

LHV:

lower heating value

LN:

light naphtha

MON:

motor octane number

MTBE:

methyl tertiary-butyl ether

NEDC:

new European driving cycle

NMEP:

net indicated mean effective pressure

PM:

particulate matters

PPCI:

partially premixed compression ignition

PRF:

primary reference fuel

RCM:

rapid compression machine

RON:

research octane number

SALN:

Saudi Aramco light naphtha

SI:

spark ignition

SOI:

start of injection

TPRF:

toluene primary reference fuel

TTW:

tank to wheel

WLTC:

worldwide harmonized light vehicles test cycle

WTT:

well to tank

WTW:

well to wheel

References

  • Akihama, K., Kosaka, H., Hotta, Y., Nishikawa, K., Inagaki, K., Fuyuto, T., Iwashita, Y., Farrell, J. T. and Weissman, W. (2009). An investigation of high load (compression ignition) operation of the “Naphtha Engine” — a combustion strategy for low well-to-wheel CO2 emissions. SAE Int. J. Fuels and Lubricants 1, 1, 920–932.

    Article  Google Scholar 

  • Andrae, J. C., Brinck, T. and Kalghatgi, G. T. (2008). HCCI experiments with toluene reference fuels modeled by a semidetailed chemical kinetic model. Combustion and Flame 155, 4, 696–712.

    Article  Google Scholar 

  • Atef, N., Badra, J., Jaasim, M., Im, H. G. and Sarathy, S. M. (2018). Numerical investigation of injector geometry effects on fuel stratification in a GCI engine. Fuel, 214, 580–589.

    Article  Google Scholar 

  • Badra, J., Viollet, Y., Elwardany, A., Im, H. G. and Chang, J. (2016a). Physical and chemical effects of low octane gasoline fuels on compression ignition combustion. Applied Energy, 183, 1197–1208.

    Article  Google Scholar 

  • Badra, J., Farooq, A., Sim, J., Viollet, Y., Im, H. G. and Chang, J. (2016b). Effects of in-cylinder mixing on low octane gasoline compression ignition combustion. SAE Technical Paper No. 2016-01-0762.

  • Badra, J. A., Sim, J., Elwardany, A., Jaasim, M., Viollet, Y., Chang, J., Amer, A. and Im, H. G. (2016c). Numerical simulations of hollow-cone injection and gasoline compression ignition combustion with naphtha fuels. J. Energy Resources Technology 138, 5, 052202.

    Article  Google Scholar 

  • Bedon, M., Milosavljevic, M., Morel, V., Solari, J. P., Bourhis G., and Dauphin, R. (2017). Design of a valuable fuel couple and engine compression ratio for an Octane-On-Demand SI engine concept: A simulation approach using experimental data. Fuel, 189, 107–119.

    Article  Google Scholar 

  • Bourhis, G., Solari, J., Morel, V., and Dauphin, R. (2016). Using ethanol’s double octane boosting effect with low RON naphtha-based fuel for an octane on demand SI engine. SAE Int. J. Engines 9, 3, 1460–1474.

    Article  Google Scholar 

  • Calam, A., Aydoğan, B. and Halis, S. (2020). The comparison of combustion, engine performance and emission characteristics of ethanol, methanol, fusel oil, butanol, isopropanol and naphtha with n-heptane blends on HCCI engine. Fuel, 266, 117071.

    Article  Google Scholar 

  • Çelebi, S., Haşimoğlu, C., Uyumaz, A., Halis, S., Calam, A., Solmaz, H. and Yilmaz, E. (2021). Operating range, combustion, performance and emissions of an HCCI engine fueled with naphtha. Fuel, 283, 118828.

    Article  Google Scholar 

  • Chang, J., Kalghatgi, G., Amer, A. and Viollet, Y. (2012). Enabling high efficiency direct injection engine with naphtha fuel through partially premixed charge compression ignition combustion. SAE Technical Paper No. 2012-01-0677.

  • Chang, J., Kalghatgi, G., Amer, A., Adomeit, P., Rohs, H. and Heuser, B. (2013a). Vehicle demonstration of naphtha fuel achieving both high efficiency and drivability with EURO6 engine-out NOx emission. SAE Int. J. Engines 6, 1, 101–119.

    Article  Google Scholar 

  • Chang, J., Viollet, Y, Amer, A. and Kalghatgi, G. (2013b). Fuel economy potential of partially premixed compression ignition (PPCI) combustion with naphtha fuel. SAE Technical Paper No. 2013-01-2701.

  • Chang, J., Viollet, Y., Alzubail, A., Abdul-Manan, A. F. N. and Al Arfaj, A. (2015). Octane-on-demand as an enabler for highly efficient spark ignition engines and greenhouse gas emissions improvement. SAE Technical Paper No. 2015-01-1264.

  • Cracknell, R., Ariztegui, J., Barnes, K., Bessonette, P., Cannella, W., Douce, F., Kelecom, B., Kraft, H., Lampreia, I., Rickeard, D. J., Savarese, M. C. and Williams, J. (2008). Advanced combustion for low emissions and high efficiency: a literature review of HCCI combustion concepts. CONCAWE Report 4/08.

  • Curran, H. J., Gaffuri, P., Pitz, W. J. and Westbrook, C. K. (1998). A comprehensive modeling study of n-heptane oxidation. Combustion and Flame 114, 1–2, 149–177.

    Article  Google Scholar 

  • Farrell, J. T. and Bunting, B. G. (2006). Fuel composition effects at constant RON and MON in an HCCI engine operated with negative valve overlap. SAE Technical Paper No. 2006-01-3275.

  • Gadonneix, P., Sambo, A., Tie’nan, L., Choudhury, A. R., Teyssen, J., Lleras, J. A. V., Naqi, A. A., Meyers, K., Shin, H. C., Nadeau, M. J., Ward, G., Morris, M., Statham, B. and Frei, C. (2011). Global Transport Scenarios 2050. World Energy Council.

  • Hanson, R., Splitter, D. and Reitz, R. D. (2009). Operating a heavy-duty direct-injection compression-ignition engine with gasoline for low emissions. SAE Technical Paper No. 2009-01-1442.

  • Henein, N. A., Fragoulis, A. N. and Luo, L. (1985). Correlation between physical properties and autoignition parameters of alternate fuels. SAE Trans., 512–532.

  • Hildingsson, L., Johansson, B., Kalghatgi, G. T. and Harrison, A. J. (2010). Some effects of fuel autoignition quality and volatility in premixed compression ignition engines. SAE Int. J. Engines 3, 1, 440–460.

    Article  Google Scholar 

  • Jain, S. K. and Aggarwal, S. K. (2018). Compositional effects on the ignition and combustion of low octane fuels under diesel conditions. Fuel, 220, 654–670.

    Article  Google Scholar 

  • Javed, T., Lee, C., AlAbbad, M., Djebbi, K., Beshir, M., Badra, J., Curran, H. and Farooq, A. (2016). Ignition studies of n-heptane/iso-octane/toluene blends. Combustion and Flame, 171, 223–233.

    Article  Google Scholar 

  • Javed, T., Nasir, E. F., Ahmed, A., Badra, J., Djebbi, K., Beshir, M., Ji, W., Sarathy, S. M. and Farooq, A. (2017). Ignition delay measurements of light naphtha: A fully blended low octane fuel. Proc. Combustion Institute 36, 1, 315–322.

    Article  Google Scholar 

  • Kalghatgi, G., Babiker, H. and Badra, J. (2015). A simple method to predict knock using toluene, n-heptane and isooctane blends (TPRF) as gasoline surrogates. SAE Int. J. Engines 8, 2, 505–519.

    Article  Google Scholar 

  • Kalghatgi, G. and Johansson, B. (2018). Gasoline compression ignition approach to efficient, clean and affordable future engines. Proc. Institution of Mechanical Engineers, Part D: J. Automobile Engineering 232, 1, 118–138.

    Google Scholar 

  • Kalghatgi, G. T., Risberg, P. and Ångström, H. E. (2006). Advantages of fuels with high resistance to auto-ignition in late-injection, low-temperature, compression ignition combustion. SAE Trans., 623–634.

  • Kalghatgi, G. T., Risberg, P. and Ångström, H. E. (2007). Partially pre-mixed auto-ignition of gasoline to attain low smoke and low NOx at high load in a compression ignition engine and comparison with a diesel fuel. SAE Technical Paper No.2007-01-0006.

  • Kaneko, N., Ando, H., Ogawa, H. and Miyamoto, N. (2002). Expansion of the operating range with in-cylinder water injection in a premixed charge compression ignition engine. SAE Trans., 2309–2315.

  • Kolodziej, C. P., Sellnau, M., Cho, K. and Cleary, D. (2016). Operation of a gasoline direct injection compression ignition engine on naphtha and E10 gasoline fuels. SAE Int. J. Engines 9, 2, 979–1001.

    Article  Google Scholar 

  • Leermakers, C. A. J., Bakker, P. C., Somers, L. M. T., de Goey, L. P. H. and Johansson, B. H. (2013). Commercial naphtha blends for partially premixed combustion. SAE Int. J. Fuels and Lubricants 6, 1, 199–216.

    Article  Google Scholar 

  • Liu, Y. D., Jia, M., Xie, M. Z. and Pang, B. (2013). Development of a new skeletal chemical kinetic model of toluene reference fuel with application to gasoline surrogate fuels for computational fluid dynamics engine simulation. Energy & Fuels 27, 8, 4899–4909.

    Article  Google Scholar 

  • Manente, V., Johansson, B. and Cannella, W. (2011). Gasoline partially premixed combustion, the future of internal combustion engines?. Int. J. Engine Research 12, 3, 194–208.

    Article  Google Scholar 

  • Mehl, M., Pitz, W. J., Westbrook, C. K. and Curran, H. J. (2011). Kinetic modeling of gasoline surrogate components and mixtures under engine conditions. Proc. Combustion Institute 33, 1, 193–200.

    Article  Google Scholar 

  • Needham, J. R., Norris-Jones, S. R. and Cooper, B. M. (1983). An evaluation of unthrottled combustion system options for future fuels. SAE Transactions, 23–56.

  • Ogawa, H., Miyamoto, N., Kaneko, N. and Ando, H. (2003). Combustion control and operating range expansion in an HCCI engine with selective use of fuels with different low-temperature oxidation characteristics. SAE Trans., 1203–1213.

  • Park, W., Park, C., Kim, Y. and Cho, G. (2020). Performance of naphtha in compression ignition modes using multicomponent surrogate fuel model. Int. J. Automotive Technology 21, 4, 843–853.

    Article  Google Scholar 

  • Partridge, R. D., Weissman, W., Ueda, T., Iwashita, Y., Johnson, P. and Kellogg, G. (2014). Onboard gasoline separation for improved vehicle efficiency. SAE Int. J. Fuels and Lubricants 7, 2, 366–378.

    Article  Google Scholar 

  • Pilla, G., Kumar, R., Läget, O., De Francqueville, L., Dauphin, R., and Solari, J. (2016). Simulation and optical diagnostics to characterize low octane number dual fuel strategies; a step towards the octane on demand engine. SAE Int. J. Fuels and Lubricants 9, 3, 443–459.

    Article  Google Scholar 

  • Qi, J. (2014). Soot Formation in GDI/GTDI Engines. Ph.D. Dissertation. University of Wisconsin-Madison. Madison, WI, USA.

  • Redwan, D. S. and Jaber, A. M. Y. (1999). Distillation characteristics and compositional analysis of Arabian light straight run naphtha. Petroleum Science and Technology 17, 9–10, 915–929.

    Article  Google Scholar 

  • Rose, K. D., Cracknell, R. F., Rickeard, D. J., Ariztegui, J., Cannella, W., Elliott, N., Hamje, H., Muether, M., Schnorbus, T. and Kolbeck, A. (2010). Impact of fuel properties on advanced combustion performance in a diesel bench engine and demonstrator vehicle. SAE Technical Paper No. 2010-01-0334.

  • Sarathy, S. M., Kukkadapu, G., Mehl, M., Javed, T., Ahmed, A., Naser, N., Tekawade, A., Kosiba, G., AlAbbad, M., Singh, E., Park, S., Rashidi, M. A., Chung, S. H., Roberts, W. L., Oeblschlaeger, M. A., Sung, C. and Farooq, A. (2016). Compositional effects on the ignition of FACE gasolines. Combustion and Flame, 169, 171–193.

    Article  Google Scholar 

  • Sellnau, M. C., Sinnamon, J., Hoyer, K. and Husted, H. (2012). Full-time gasoline direct-injection compression ignition (GDCI) for high efficiency and low NOx and PM. SAE Int. J. Engines 5, 2, 300–314.

    Article  Google Scholar 

  • Vallinayagam, R., Vedharaj, S., An, Y., Dawood, A., Najafabadi, M., Somers, B. and Johansson, B. (2017). Combustion stratification for naphtha from CI combustion to PPC. SAE Paper No. 2017-01-0745.

  • Vallinayagam, R., An, Y., Vedharaj, S., Sim, J., Chang, J. and Johansson, B. (2018). Naphtha vs. dieseline-The effect of fuel properties on combustion homogeneity in transition from CI combustion towards HCCI. Fuel, 224, 451–460.

    Article  Google Scholar 

  • Viollet, Y., Abdullah, M., Alhajhouje, A. and Chang, J. (2015). Characterization of high efficiency octane-on-demand fuels requirement in a modern spark ignition engine with dual injection system. SAE Technical Paper No. 2015-01-1265.

  • Viollet, Y., Chang, J. and Kalghatgi, G. (2014). Compression ratio and derived cetane number effects on gasoline compression ignition engine running with naphtha fuels. SAE Int. J. Fuels and Lubricants 7, 2, 412–426.

    Article  Google Scholar 

  • Wang, H., Yao, M., Yue, Z., Jia, M. and Reitz, R.D. (2015). A reduced toluene reference fuel chemical kinetic mechanism for combustion and polycyclic-aromatic hydrocarbon predictions. Combustion and Flame 162, 6, 2390–2404.

    Article  Google Scholar 

  • Wang, L., Badra, J. A., Roberts, W. L. and Fang, T. (2017). Characteristics of spray from a GDI fuel injector for naphtha and surrogate fuels. Fuel, 190, 113–128.

    Article  Google Scholar 

  • Wang, M., Lee, H. and Molburg, J. (2004). Allocation of energy use in petroleum refineries to petroleum products. The Int. J. Life Cycle Assessment 9, 1, 34–44.

    Article  Google Scholar 

  • Won, H. W., Bouet, A., Duffour, F. and Francqueville, L. (2016). Naphtha fuel on a light duty single cylinder compression ignition engine with two different compression ratios. SAE Technical Paper No. 2016-01-2302.

  • Wu, Z., Wang, L., Badra, J. A., Roberts, W. L. and Fang, T. (2018). GDI fuel sprays of light naphtha, PRF95 and gasoline using a piezoelectric injector under different ambient pressures. Fuel, 223, 294–311.

    Article  Google Scholar 

  • Zhang, Y., Kumar, P., Traver, M. and Cleary, D. (2016). Conventional and low temperature combustion using naphtha fuels in a multi-cylinder heavy-duty diesel engine. SAE Int. J. Engines 9, 2, 1021–1035.

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2019R1G1A1098996).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wonah Park.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, W. Naphtha as a Fuel for Internal Combustion Engines. Int.J Automot. Technol. 22, 1119–1133 (2021). https://doi.org/10.1007/s12239-021-0100-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-021-0100-9

Key Words

Navigation