Skip to main content
Log in

Triangular functions for numerical solution of the nonlinear Volterra integral equations

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, a new numerical iterative method based on the successive approximations method for solving nonlinear Hammerstein Volterra integral equations of the second kind is proposed. The main approximation tool is based on triangular functions. Also, the convergence analysis and numerical stability of the proposed method are proved. Finally, some numerical examples verify the theoretical results and show the accuracy of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Muskhelishvili, N.I.: Some Basic Problems of Mathematical Theory of Elasticity. Noordhoff, Holland (1953)

    MATH  Google Scholar 

  2. Koya, A.C., Erdogan, F.: On the solution of integral equation with a generalized Cauchy kernel. Quart. Appl. Math. 9, 455–469 (1997)

    MathSciNet  Google Scholar 

  3. Jerri, A.: Introduction to Integral Equations with Applications. Wiley, New York (1999)

    MATH  Google Scholar 

  4. Ramm, A.G.: Dynamical systems method for solving operator equations. Commun. Nonlinear. Sci. Numer. Simul. 9(4), 383–402 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. McKee, S., Tang, T., Diogo, T.: An euler-type method for two-dimensional volterra integral equations of the first kind. IMA. J. Numer. Anal. 20(3), 423–440 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hamoud, A.A., Ghadle, K.P.: Approximate solutions of fourth-order fractional integro-differential equations. Acta. Univ. Apulensis. 55, 49–61 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Atkinson, K., Potra, F.: Projection and iterated projection methods for nonlinear integral equations. SIAM J. Numer. Anal. 24, 1352–1373 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hashemizadeh, E., Rostami, M.: Numerical solution of Hammerstein integral equations of mixed type using the Sinc-collocation method. J. Comput. Appl. Math. 279, 31–39 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Maleknejad, K., Mahmoudi, Y.: Numerical solution of linear Fredholm integral equation by using hybrid Taylor and Block-Pulse functions. Appl. Math. Comput. 149, 799–806 (2004)

    MathSciNet  MATH  Google Scholar 

  10. Fathizadeh, E., Ezzati, R., Maleknejad, K.: Hybrid rational haar wavelet and block pulse functions method for solving population growth model and abel integral equations. Math. Probl. Eng. 6, 1–7 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Allouch, C., Sbibih, D., Tahrichi, M.: Bernoulli Superconvergent Nyström and degenerate kernel methods for Hammerstein integral equations. J. Comput. Appl. Math 258, 30–41 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yang, C.: Chebyshev polynomial solution of nonlinear integral equations. J. Frankl. Inst. 34, 9947–9956 (2012)

    MathSciNet  Google Scholar 

  13. Maleknejad, K., Aghazadeh, N., Rabbani, M.: Numerical solution of second kind Fredholm integral equations system by using a Taylor-series expansion method. Appl. Math. Comput. 175, 1229–1234 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Wang, Q., Wang, K., Chen, S.H.: Least squares approximation method for the solution of Volterra-Fredholm integral equations. J. Comput. Appl. Math. 272, 141–147 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tavassoli Kajani, M., Hadi Vencheh, A., Ghasemi, M.: The Chebyshev wavelets operationalmatrix of integration and product operation matrix. Int. J. Comput. Math. 86(7), 1118–1125 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bazm, S.: Bernoulli polynomials for the numerical solution of some classes of linear and nonlinear integral equations. J. Comput. Appl. Math. 275, 44–60 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Maleknejad, K., Sahlan, M.N.: The method of moments for solution of second kind Fredholm integral equations based on B-spline wavelets. Int. J. Comput. Math. 87(7), 1602–1616 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Aziz, I., Islam, S., Khan, W.: Quadrature rules for numerical integration based on Haar wavelets and hybrid functions. Comput. Math. Appl. 61(9), 2770–2781 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Aziz, I.: New algorithms for the numerical solution of nonlinear Fredholm and Volterra integral equations using Haar wavelets. J. Comput. Appl. Math. 239, 333–345 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Aziz, I., Muhammad, F.: A new approach for numerical solution of integro-differential equations via Haar wavelets. Int. J. Comput. Math. 90(9), 1971–1989 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Aziz, I., Al-Fhaid, A.S.: An improved method based on Haar wavelets for numerical solution of nonlinear integral and integro-differential equations of first and higher orders. J. Comput. Appl. Math. 260, 449–469 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Aziz, I., Khan, F.: A new method based on Haar wavelet for the numerical solution of two-dimensional nonlinear integral equations. J. Comput. Appl. Math. 272, 70–80 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Maleknejad, K., Yousefi, M.: Numerical solution of the integral equation of the second kind by using wavelet bases of Hermite cubic splines. Appl. Math. Comput. 183, 134–141 (2006)

    MathSciNet  MATH  Google Scholar 

  24. Bica, A.M.: The numerical method of successive interpolations for Fredholm functional integral equations. Numer. Algorithms 58(3), 351 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bica, A.M., Curila, M., Curila, S.: About a numerical method of successive interpolations for functional Hammerstein integral equations. J. Comput. Appl. Math. 236(2), 2005–2024 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kazemi, M., Torkashvand, V., Fathizadeh, E.: An approximation method for the solution of nonlinear Fredholm integral equations of the second kind. In: The 44th Annual Iranian Mathematics Conference (2018)

  27. Kazemi, M., Ezzati, R.: Numerical solution of two-dimensional nonlinear integral equations via quadrature rules and iterative method. Adv. Differ. Equ. Contr. Process. 17, 27–56 (2016)

    MATH  Google Scholar 

  28. Kazemi, M.: Approximating the solution of three-dimensional nonlinear Fredholm integral equations. J. Comput. Appl. Math. 395, 113590 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  29. Maleknejad, K., Torabi, P.: Application of fixed point method for solving nonlinear Volterra-Hammerstein integral equation. U.P.B. Sci. Bull. Ser. A, Vol. 74, Iss. 1, 2012 74.1: 45—56 (2012)

  30. Agarwal, R.P., Hussain, N., Taoudi, M.A.: Fixed point theorems in ordered banach spaces and applications to nonlinear integral equations. Abstr. Appl. Anal. 2012(2012), Hindawi

  31. Kazemi, M., Ezzati, R.: Existence of solutions for some nonlinear volterra integral equations via Petryshyn’s fixed point theorem. Int. J. Nonlinear Anal. Appl. 9, 1–12 (2018)

  32. Kazemi, M., Ezzati, R.: Existence of solution for some nonlinear two-dimensional volterra integral equations via measures of noncompactness. Appl. Math. Comput. 275, 165–171 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Maleknejad, K., Mollapourasl, R., Nouri, K.: Study on existence of solutions for some nonlinear functional-integral equations. Nonlinear Anal. 69, 2582–2588 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. José Antonio, E., Miguel Ángel, H.V.: On the existence of solutions of nonlinear Fredholm integral equations from Kantorovich’s technique. Algorithms 10(89), 2–11 (2017)

  35. Kolodii, I., Khil’debrand, F.: Some properties of the modulus of continuity. Mathematical notes of the Academy of Sciences of the USSR 9(5), 285–288 (1971)

  36. Dem yanov, V.F., and Malozëmov, V.N.: Introduction to minimax. Dover Publications, Inc., New York, (1990). Translated from the Russian by D. Louvish, Reprint of the 1974 edition

  37. Deb, A., Dasgupta, A., Sarkar, G.: A new set of orthogonal functions and its application to the analysis of dynamic systems. J. Frankl. Inst. 343(1), 1–26 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Babolian, E., Mokhtari, R., Salmani, M.: Using direct method for solving variational problems via triangular orthogonal functions. Appl. Math. Comput. 202, 452–464 (2008)

    MATH  Google Scholar 

  39. Babolian, E., Masouri, Z., Hatamzadeh-Varmazyar, S.: Numerical solution of nonlinear Volterra-Fredholm integro-differential equations via direct method using triangular functions. Comput. Math. Appl. 58, 239–247 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Maleknejad, K., Almasieh, H., Roodaki, M.: Triangular functions (TF) method for the solution of Volterra-Fredholm integral equations. Commun. Nonlinear. Sci. Numer. Simul. 15(11), 3293–3298 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Hatamzadeh-Varmazyar, S., Masouri, Z.: Numerical solution of second kind Volterra and Fredholm integral equations based on a direct method via triangular functions. Int. J. Indus. Math. 11(2), 79–87 (2019)

    Google Scholar 

  42. Mukhopadhyay, A., Ganguly, A., Chatterjee, S.D.: Solution of Volterra and Fredholm classes of equations via triangular orthogonal function (a combination of right hand triangular function and left hand triangular function) and hybrid orthogonal function (a combination of sample hold function and right hand triangular function). J Inst Eng (India) Ser B 99(2), 181–209 (2018)

    Article  Google Scholar 

  43. Biazar, J., Ghazvini, H.: Numerical solution for special nonlinear Fredholm integral equation by HPM. Appl. Math. Comput. 195, 681–687 (2008)

    MathSciNet  MATH  Google Scholar 

  44. Saberi-Nadjafi, J., Heidari, M.: Solving nonlinear integral equations in the Urysohn form by Newton–Kantorovich-quadrature method. Comput. Math. Appl. 60, 2058–2065 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. Atkinson, K., Kendall, E.: The numerical solution of integral equations of the second kind. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to the anonymous referees and the editorial board for their careful reading and helpful suggestions on the improvement of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manochehr Kazemi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazemi, M. Triangular functions for numerical solution of the nonlinear Volterra integral equations. J. Appl. Math. Comput. 68, 1979–2002 (2022). https://doi.org/10.1007/s12190-021-01603-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01603-z

Keywords

Mathematics Subject Classification

Navigation