Skip to main content
Log in

Thermodynamics of a static electric-magnetic black hole in Einstein-Born-Infeld-AdS theory with different horizon geometries

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We consider black hole solutions with electric and magnetic sources in the four-dimensional Einstein-Born-Infeld-AdS theory with spherical, planar and hyperbolic horizon geometries. Exact analytical solutions for the metric function, electric and magnetic fields were obtained and they recover the RN-AdS black hole in the limit \(\beta \rightarrow +\infty \) for spherical horizon in the absence of the magnetic charge. Expressions for temperature, electric and magnetic potential were obtained and they satisfy the first law of the extended black hole thermodynamics, where a negative cosmological constant is associated with thermodynamic pressure. Also, the Born-Infeld vacuum polarization term \(Bd\beta \) was included into the first law in order to satisfy the Smarr relation. Critical behavior of the black hole was examined and condition on electric and magnetic charges were obtained when phase transition appears. Also, the critical ratio and capacity at constant pressure were calculated. Electric and magnetic charges enter into the metric function and thermodynamic quantities symmetrically and thus the presence of the magnetic charge does not bring very significant new features. Finally, we examine the Joule-Thomson expansion if the black hole mass is fixed. The inversion and isenthalpic curves were plotted and the cooling and heating regions were demonstrated. These results recover the Joule-Thomson expansion recently considered for the RN-AdS black hole in the corresponding limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kastor, D., Ray, S., Traschen, J.: Class. Quantum Grav. 26, 258 (2009)

    Article  Google Scholar 

  2. Dolan, B.P.: Class. Quantum Grav. 28, 125020 (2011)

    Article  ADS  Google Scholar 

  3. Dolan, B.P.: Class. Quantum Grav. 28, 235017 (2011)

    Article  ADS  Google Scholar 

  4. Sekiwa, Y.: Phys. Rev. D 73, 084009 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  5. Cvetič, M., Gibbons, G.W., Kubizňák, D., Pope, C.N.: Rhys. Rev. D 84, 024037 (2011)

    Article  ADS  Google Scholar 

  6. Kubizňák, D., Mann, R.B., Teo, M.: Class. Quantum Grav. 34, 063001 (2017)

    Article  ADS  Google Scholar 

  7. Kubizňák, D., Mann, R.B.: J. High Energ. Phys. 07, 033 (2012)

    Article  ADS  Google Scholar 

  8. Altamirano, N., Kubizňák, D., Mann, R.B., Sherkatghanad, Z.: Galaxies 2, 89 (2014)

    Article  ADS  Google Scholar 

  9. Aydıner, E., Okcu, O.: Eur. Phys. J. C 77, 24 (2017)

    Article  ADS  Google Scholar 

  10. Jie-Xiong, M., Gu-Qiang, L., Shan-Quan, L., Xiao-Bao, X.: Phys. Rev. D 98, 124032 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  11. Cisterna, A., Shi-Qian, H., Xiao-Mei, K.: Phys. Lett. B 797, 134883 (2019)

  12. Bi, S., Du, M., Tao, J., Yao, F.: Chin. Phys. C 45, 025109 (2021)

    Article  ADS  Google Scholar 

  13. Mazharimousavi, S.H., Halilsoy, M., Gurtug, O.: Eur. Phys. J. C 74, 2735 (2014)

    Article  ADS  Google Scholar 

  14. Hassaïne, M., Martínez, C.: Phys. Rev. D 75, 027502 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  15. Hassaïne, M., Martínez, C.: Class. Quantum Grav. 25, 195023 (2008)

    Article  ADS  Google Scholar 

  16. Hendi, S.H.: Prog. Theor. Phys. 124, 493 (2010)

    Article  ADS  Google Scholar 

  17. Panotopoulos, G., Rincón, Á.: Int. J. Mod. Phys. D 28, 1950016 (2019)

    Article  ADS  Google Scholar 

  18. Tataryn, M.B., Stetsko, M.M.: Int. J. Mod. Phys. D 29, 2050111 (2020)

    Article  ADS  Google Scholar 

  19. Gonzalez, H.A., Hassaïne, M., Martinez, C.: Phys. Rev. D 80, 104008 (2009)

    Article  ADS  Google Scholar 

  20. Born, M., Infeld, L.: Proc. Roy. Soc. Lond. A 144, 425 (1934)

    Article  ADS  Google Scholar 

  21. Fernando, S., Krug, D.: Gen. Relativ. Gravit. 35, 129 (2003)

    Article  ADS  Google Scholar 

  22. Banerjee, R., Roychowdhury, D.: Phys. Rev. D 85, 044040 (2012)

    Article  ADS  Google Scholar 

  23. Banerjee, R., Roychowdhury, D.: Phys. Rev. D 85, 104043 (2012)

    Article  ADS  Google Scholar 

  24. Li, S., Lü, H., Wei, H.: J. High Energ. Phys. 07, 004 (2016)

    Article  ADS  Google Scholar 

  25. Myung, Y.S., Yong-Wan, K., Young-Jai, P.: Phys. Rev. D 78, 084002 (2008)

  26. Dey, T.K.: Phys. Lett. B 595, 484 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  27. Rong-Gen, C., Da-Wei, P., Wang, A.: Phys. Rev. D 70, 124034 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  28. Mišković, O., Olea, R.: Phys Rev. D 77, 124048 (2008)

    Article  ADS  Google Scholar 

  29. Yi-Huan, W.: Chin. Phys. B 19, 090404 (2010)

    Article  Google Scholar 

  30. Gunasekaran, S., Kubizňák, D., Mann, R.B.: J. High Energ. Phys. 11, 110 (2012)

    Article  ADS  Google Scholar 

  31. De-Cheng, Z., Shao-Jun, Z., Wang, B.: Phys. Rev. D 89, 044002 (2014)

    Article  ADS  Google Scholar 

  32. Bretón, N., Clark, T., Fernando, S.: Int. J. Mod. Phys. D 26, 1750112 (2017)

    Article  ADS  Google Scholar 

  33. Hendi, S.H., Allahverdizadeh, M.: Adv. High Energy Phys. 390101, 390101 (2014)

    Google Scholar 

  34. Sheykhi, A., Hajkhalili, S.: Phys. Rev. D 89, 104019 (2014)

    Article  ADS  Google Scholar 

  35. Hendi, S.H., Panahiyan, S., Panah, B.E.: Int. J. Mod. Phys. D 25, 1650010 (2016)

    Article  ADS  Google Scholar 

  36. Tataryn, M.B., Stetsko, M.M.: Int. J. Mod. Phys. D 28, 1950160 (2019)

    Article  ADS  Google Scholar 

  37. Jiménez, J.B., Heisenberg, L., Olmo, G.J., Rubiera-Garcia, D.: Phys. Rep. 727, 1 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  38. Gaete, P., Helayël-Neto, J.A.: Eur. Phys. Lett. 119, 51001 (2017)

    Article  ADS  Google Scholar 

  39. Kruglov, S.I.: Int. J. Geom. Methods Mod. Phys. 12, 1550073 (2015)

    Article  MathSciNet  Google Scholar 

  40. Shapere, A.D., Trivedi, S., Wilczek, F.: Mod. Phys. Lett. A 6, 2677 (1991)

    Article  ADS  Google Scholar 

  41. Sen, A.: Nucl. Phys. B 404, 109 (1993)

    Article  ADS  Google Scholar 

  42. Chamseddine, A.H., Sabra, W.A.: Phys. Lett. B 485, 301 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  43. Hartnoll, S.A., Kovtun, P.K.: Phys. Rev. D 76, 066001 (2007)

    Article  ADS  Google Scholar 

  44. Hartnoll, S.A., Kovtun, P.K., Muller, M., Sachdev, S.: Phys. Rev. B 76, 144502 (2007)

    Article  ADS  Google Scholar 

  45. Albash, T., Johnson, C.V.: J. High Energ. Phys. 09, 121 (2008)

    Article  ADS  Google Scholar 

  46. Wirschins, M., Sood, A., Kunz, J.: Phys. Rev. D 63, 084002 (2001)

    Article  ADS  Google Scholar 

  47. Lü, H., Pang, Y., Pope, C.N.: J. High Energ. Phys. 11, 033 (2013)

    Article  ADS  Google Scholar 

  48. Dutta, S., Jain, A., Soni, R.: J. High Energ. Phys. 12, 060 (2013)

    Article  ADS  Google Scholar 

  49. Eiroa, E.F.: Phys. Rev. D 73, 043002 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  50. Gibbons, G.W., Rasheed, D.A.: Nucl. Phys. B 454, 185 (1995)

    Article  ADS  Google Scholar 

  51. Stefanov, IZh, Yazadjiev, S.S., Todorov, M.D.: Phys. Rev. D 75, 084036 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  52. Chemissany, W.A., Mees de Roo, S.: Class Quantum Grav. 25, 225009 (2008)

  53. Kruglov, S.I.: Ann. Phys. 383, 550 (2017)

    Article  ADS  Google Scholar 

  54. Kruglov, S.I.: Gen. Relativ. Gravit. 51, 121 (2019)

    Article  ADS  Google Scholar 

  55. Meng, K., Cao, L., Zhao, J., Zhou, T., Qin, F., Deng, M.: Phys. Lett. B 819, 136420 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Tataryn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Graphs on the Fig. 5 illustrate solutions of the first equation of the system (24) and also Eq. (35) depending on parameter \(\beta \) for various other parameters. Graphs on the Fig. 6 demonstrate the dependence of the critical ratio (29) on parameters \(\beta \) and charges \(q_e\), \(q_m\).

Fig. 5
figure 5

For all graphs \(q_m=0\), \(q_e=0.5,1,1.5\) (solid lines from bottom to top). Dashed lines show the RN-AdS case. Dotted lines show the equality case of (25) and the region of two real positive roots for (a) and the equality case of (36) for (b), (c)

Fig. 6
figure 6

Here q stands for \(\sqrt{q_e^2+q_m^2}\). These two identical graphs demonstrate, that the critical ratio (29) depends only on the combination \(\beta q\). On the graph a solid curves correspond to \(q_1=0.5\), \(q_2=1\), \(q_3=2\) from bottom to top. The horizontal dashed line denotes the RN-AdS limit, namely 3/8. Vertical lines correspond to \(\beta _1=4\), \(\beta _2=2\), \(\beta _3=1\) from right to left. The horizontal dotted line crosses the solid curves in points where \(\beta _1q_1=\beta _2q_2=\beta _3q_3=2\). Parameters on the graph (b) correspond to the ones on the graph (a) by replacing \(\beta \rightarrow q\), \(q\rightarrow \beta \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tataryn, M.B., Stetsko, M.M. Thermodynamics of a static electric-magnetic black hole in Einstein-Born-Infeld-AdS theory with different horizon geometries. Gen Relativ Gravit 53, 72 (2021). https://doi.org/10.1007/s10714-021-02842-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-021-02842-y

Keywords

Navigation