Skip to main content
Log in

Vanadium-Substituted Polyoxomolybdates for Methylene Blue Adsorption from Aqueous Solutions

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The objective of this study is to assess the effectiveness of three vanadium-substituted polyoxomolybdates, [PMo11VO40]4−, [PMo10V2O40]5−, and [PMo9V3O40]6−, for the removal of methylene blue dye (MB) from aqueous solutions. The materials were synthesized and initially characterized by Fourier transform infrared spectroscopy (FTIR) to confirm purity. Then the effect of several experimental factors, such as contact time (0–55 min), adsorbent dose (0.003–0.2 g), initial dye concentration (2–35 mg/L), as well as pH (1–10) and temperature (293–313 K) of the reaction, were investigated in order to identify the optimum conditions for each parameter. Accordingly, MB concentrations were recorded before and after adsorption using an ultraviolet–visible spectrophotometer (UV–Vis) at 664 nm. Hence, the synthesized compounds, which are all negatively charged, showed high removal efficiency towards the cationic dye. Optimized results for 25 mg/L methylene blue exhibited a contact time of only 10 min for [PMo11VO40]4− and [PMo10V2O40]5−while only 5 min for [PMo9V3O40]6−. For [PMo9V3O40]6−, the percentage of removal decreases from 92.70 to 78.20% with increasing pH showing the suitability of acid pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Saravanan, E. Sacari, F. Gracia, M. M. Khan, E. Mosquera, and V. K. Gupta (2016). Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. Journal of Molecular Liquids 221, 1029–1033.

    Article  CAS  Google Scholar 

  2. R. Saravanan, M. M. Khan, V. K. Gupta, E. Mosquera, F. Gracia, V. Narayanan, and A. Stephen (2015). ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents. Journal of Colloid and Interface Science 452, 126–133.

    Article  CAS  PubMed  Google Scholar 

  3. R. Saravanan, N. Karthikeyan, V. Gupta, E. Thirumal, P. Thangadurai, V. Narayanan, and A. Stephen (2013). ZnO/Ag nanocomposite: an efficient catalyst for degradation studies of textile effluents under visible light. Materials Science and Engineering: C 33, 2235–2244.

    Article  CAS  Google Scholar 

  4. A. E. Burakov, E. V. Galunin, I. V. Burakova, A. E. Kucherova, S. Agarwal, A. G. Tkachev, and V. K. Gupta (2018). Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicology and Environmental Safety 148, 702–712.

    Article  CAS  PubMed  Google Scholar 

  5. V. K. Gupta, A. Nayak, and S. Agarwal (2015). Bioadsorbents for remediation of heavy metals: current status and their future prospects. Environmental Engineering Research 20, 1–18.

    Article  Google Scholar 

  6. V. K. Gupta and T. A. Saleh (2013). Sorption of pollutants by porous carbon, carbon nanotubes and fullerene-An overview. Environmental Science and Pollution Research 20, 2828–2843.

    Article  CAS  PubMed  Google Scholar 

  7. R. Saravanan, V. Gupta, V. Narayanan, and A. Stephen (2014). Visible light degradation of textile effluent using novel catalyst ZnO/γ-Mn2O3. Journal of the Taiwan Institute of Chemical Engineers 45, 1910–1917.

    Article  CAS  Google Scholar 

  8. R. Saravanan, S. Karthikeyan, V. Gupta, G. Sekaran, V. Narayanan, and A. Stephen (2013). Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Materials Science and Engineering: C 33, 91–98.

    Article  CAS  Google Scholar 

  9. P. Qin, Y. Yang, X. Zhang, J. Niu, H. Yang, S. Tian, J. Zhu, and M. Lu (2017). Highly efficient, rapid, and simultaneous removal of cationic dyes from aqueous solution using monodispersed mesoporous silica nanoparticles as the adsorbent. Nanomaterials 8, 4.

    Article  PubMed Central  CAS  Google Scholar 

  10. N. Mohammadi, H. Khani, V. K. Gupta, E. Amereh, and S. Agarwal (2011). Adsorption process of methyl orange dye onto mesoporous carbon material–kinetic and thermodynamic studies. Journal of Colloid and Interface Science 362, 457–462.

    Article  CAS  PubMed  Google Scholar 

  11. R.D. Saini (2017). Textile organic dyes: Polluting effects and elimination methods from textile waste water. International Journal of Chemical Engineering Research 9, 121–136.

    Google Scholar 

  12. M. Mathew, R. D. Desmond, and M. Caxton (2016). Removal of methylene blue from aqueous solutions using biochar prepared from Eichhorrnia crassipes (Water Hyacinth)-molasses composite: Kinetic and equilibrium studies. African Journal of Pure and Applied Chemistry 10, 63–72.

    Article  CAS  Google Scholar 

  13. V. Gupta, I. Tyagi, S. Agarwal, R. Singh, M. Chaudhary, A. Harit, and S. Kushwaha (2016). Column operation studies for the removal of dyes and phenols using a low cost adsorbent. Global Journal of Environmental Science and Management 2, 1–10.

    CAS  Google Scholar 

  14. Y.-L. Yuan, Y.-Z. Wen, X.-Y. Li, and S.-Z. Luo (2006). Treatment of wastewater from dye manufacturing industry by coagulation. Journal of Zhejiang University-SCIENCE A 7, 340–344.

    Article  Google Scholar 

  15. B. Padhi (2012). Pollution due to synthetic dyes toxicity & carcinogenicity studies and remediation. International Journal of Environmental Sciences 3, 940.

    Google Scholar 

  16. R. Saravanan, V. K. Gupta, V. Narayanan, and A. Stephen (2013). Comparative study on photocatalytic activity of ZnO prepared by different methods. Journal of Molecular Liquids 181, 133–141.

    Article  CAS  Google Scholar 

  17. R. Saravanan, V. Gupta, E. Mosquera, and F. Gracia (2014). Preparation and characterization of V2O5/ZnO nanocomposite system for photocatalytic application. Journal of Molecular Liquids 198, 409–412.

    Article  CAS  Google Scholar 

  18. T. A. Saleh and V. K. Gupta (2014). Processing methods, characteristics and adsorption behavior of tire derived carbons: a review. Advances in Colloid and Interface Science 211, 93–101.

    Article  CAS  PubMed  Google Scholar 

  19. R. Saravanan, S. Joicy, V. Gupta, V. Narayanan, and A. Stephen (2013). Visible light induced degradation of methylene blue using CeO2/V2O5 and CeO2/CuO catalysts. Materials Science and Engineering: C 33, 4725–4731.

    Article  CAS  Google Scholar 

  20. R. Saravanan, V. Gupta, T. Prakash, V. Narayanan, and A. Stephen (2013). Synthesis, characterization and photocatalytic activity of novel Hg doped ZnO nanorods prepared by thermal decomposition method. Journal of Molecular Liquids 178, 88–93.

    Article  CAS  Google Scholar 

  21. T. A. Saleh and V. K. Gupta (2012). Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide. Journal of Colloid and Interface Science 371, 101–106.

    Article  CAS  PubMed  Google Scholar 

  22. S. Rajendran, M. M. Khan, F. Gracia, J. Qin, V. K. Gupta, and S. Arumainathan (2016). Ce 3+-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO 2 nanocomposite. Scientific Reports 6, 31641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. M. Ahmaruzzaman and V. K. Gupta (2011). Rice husk and its ash as low-cost adsorbents in water and wastewater treatment. Industrial & Engineering Chemistry Research 50, 13589–13613.

    Article  CAS  Google Scholar 

  24. C. P. Pradeep, D.-L. Long, and L. Cronin (2010). Cations in control: crystal engineering polyoxometalate clusters using cation directed self-assembly. Dalton Transactions 39, 9443–9457.

    Article  CAS  PubMed  Google Scholar 

  25. X. López, L. Vilà-Nadal, X. Aparicio-Anglès, and J. M. Poblet (2010). Theoretical view on the origin and implications of structural distortions in polyoxometalates. Physics Procedia 8, 94–103.

    Article  CAS  Google Scholar 

  26. P. Lei, C. Chen, J. Yang, W. Ma, J. Zhao, and L. Zang (2005). Degradation of dye pollutants by immobilized polyoxometalate with H2O2 under visible-light irradiation. Environmental Science & Technology 39, 8466–8474.

    Article  CAS  Google Scholar 

  27. Y. Ren, M. Wang, X. Chen, B. Yue, and H. He (2015). Heterogeneous catalysis of polyoxometalate based organic–inorganic hybrids. Materials 8, 1545–1567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. T. Ueda, Y. Nishimoto, R. Saito, M. Ohnishi, and J.-I. Nambu (2015). Vanadium (V)-Substitution Reactions of Wells–Dawson-Type Polyoxometalates: From [X2M18O62] 6−(X= P, As; M= Mo, W) to [X2VM17O62] 7−. Inorganics 3, 355–369.

    Article  CAS  Google Scholar 

  29. J. Bjorklund and S. Kim (2015). Vanadium Substituted Polyoxometalates. John Wesley Powell Student Research Conference.

  30. G. A. Tsigdinos and C. J. Hallada (1968). Molybdovanadophosphoric acids and their salts. I. Investigation of methods of preparation and characterization. Inorganic Chemistry 7, 437–441.

    Article  CAS  Google Scholar 

  31. H. Albroomi, M. Elsayed, A. Baraka, and M. Abdelmaged (2015). Factors affecting the removal of a basic and an azo dye from artificial solutions by adsorption using activated carbon. Journal of the Turkish Chemical Society, Section A: Chemistry 2, 17–33.

    Google Scholar 

  32. C. Mani, M. Ramalingam, S. Manickam, K. R. Srinivasalu, E. Deivanayagam, and B. I. Mohammed (2017). Vanadium-Substituted Polyoxometalate Ionic Liquid Hybrids: Effect of Alkyl Chain on Dye Removal. ChemistrySelect 2, 9934–9942.

    Article  CAS  Google Scholar 

  33. Z. Elassal, L. Groula, K. Nohair, A. Sahibed-dine, R. Brahmi, M. Loghmarti, A. Mzerd, and M. Bensitel (2011). Synthesis and FT–IR study of the acido–basic properties of the V2O5 catalysts supported on zirconia. Arabian Journal of Chemistry 4, 313–319.

    Article  CAS  Google Scholar 

  34. H. Salavati, A. Teimouri, and S. Kazemi (2017). Investigation of photocatalytic performance of keggin type heteropolyacid in degradation of methylene blue. Chemical Methodologies 2, 158–169.

    Article  Google Scholar 

  35. M. Fatiha and B. Belkacem (2016). Adsorption of methylene blue from aqueous solutions using natural clay. J. Mater. Environ. Sci 7, 285–292.

    CAS  Google Scholar 

  36. A. M. K. Aljebori and A. N. Alshirifi (2012). Effect of different parameters on the adsorption of textile dye maxilon blue GRL from aqueous solution by using white marble. Asian Journal of Chemistry 24, 5813.

    CAS  Google Scholar 

  37. V. K. Gupta, I. Ali, T. A. Saleh, M. Siddiqui, and S. Agarwal (2013). Chromium removal from water by activated carbon developed from waste rubber tires. Environmental Science and Pollution Research 20, 1261–1268.

    Article  CAS  PubMed  Google Scholar 

  38. M. Ghaedi, S. Hajjati, Z. Mahmudi, I. Tyagi, S. Agarwal, A. Maity, and V. Gupta (2015). Modeling of competitive ultrasonic assisted removal of the dyes–Methylene blue and Safranin-O using Fe3O4 nanoparticles. Chemical Engineering Journal 268, 28–37.

    Article  CAS  Google Scholar 

  39. E. A. Dil, M. Ghaedi, A. Ghaedi, A. Asfaram, A. Goudarzi, S. Hajati, M. Soylak, S. Agarwal, and V. K. Gupta (2016). Modeling of quaternary dyes adsorption onto ZnO–NR–AC artificial neural network: analysis by derivative spectrophotometry. Journal of Industrial and Engineering Chemistry 34, 186–197.

    Article  CAS  Google Scholar 

  40. F. Nekouei, S. Nekouei, I. Tyagi, and V. K. Gupta (2015). Kinetic, thermodynamic and isotherm studies for acid blue 129 removal from liquids using copper oxide nanoparticle-modified activated carbon as a novel adsorbent. Journal of Molecular Liquids 201, 124–133.

    Article  CAS  Google Scholar 

  41. V. K. Gupta, R. Jain, A. Nayak, S. Agarwal, and M. Shrivastava (2011). Removal of the hazardous dye—tartrazine by photodegradation on titanium dioxide surface. Materials Science and Engineering: C 31, 1062–1067.

    Article  CAS  Google Scholar 

  42. Y. Chen, Z. Yao, H. N. Miras, and Y. F. Song (2015). Modular polyoxometalate-layered double hydroxide composites as efficient oxidative catalysts. Chemistry—A European Journal 21, 10812–10820.

    Article  CAS  PubMed  Google Scholar 

  43. M. Mulugeta and B. Lelisa (2014). Removal of methylene blue (Mb) dye from aqueous solution by bioadsorption onto untreated Parthenium hystrophorous weed. Modern Chemistry & Applications 2, 1–5.

    CAS  Google Scholar 

  44. F. B. AbdurRahman, M. Akter, and M. Z. Abedin (2013). Dyes removal from textile wastewater using orange peels. International Journal of Scientific & Technology Research 2, 47–50.

    Google Scholar 

  45. I. Ali, V. K. Gupta, T. A. Khan, and M. Asim (2012). Removal of arsenate from aqueous solution by electro-coagulation method using Al-Fe electrodes. Int J Electrochem Sci 7, 1898–1907.

    CAS  Google Scholar 

  46. A. Mittal, J. Mittal, A. Malviya, and V. Gupta (2010). Removal and recovery of Chrysoidine Y from aqueous solutions by waste materials. Journal of Colloid and Interface Science 344, 497–507.

    Article  CAS  PubMed  Google Scholar 

  47. T. A. Saleh and V. K. Gupta (2011). Functionalization of tungsten oxide into MWCNT and its application for sunlight-induced degradation of rhodamine B. Journal of Colloid and Interface Science 362, 337–344.

    Article  CAS  PubMed  Google Scholar 

  48. O. Bechiri and M. Abbessi (2017). Catalytic oxidation of naphtol blue black in water: Effect of Operating Parameters and the Type of Catalyst. Journal of Water and Environmental Nanotechnology 2, 9–16.

    CAS  Google Scholar 

  49. O.A.A. Dos Santos, C.Z. Castellib, M.F. Oliveirab, A.F. de Almeida Netob, and M. da Silvab (2013). Adsorption of synthetic orange dye wastewater in organoclay. Chemical Engineering Transactions 32, 307–312.

    Google Scholar 

  50. M. Khodaie, N. Ghasemi, B. Moradi, and M. Rahimi (2013). Removal of methylene blue from wastewater by adsorption onto ZnCl2 activated corn husk carbon equilibrium studies. Journal of Chemistry 2013, 1–6.

    Article  CAS  Google Scholar 

  51. V. K. Gupta, C. Jain, I. Ali, S. Chandra, and S. Agarwal (2002). Removal of lindane and malathion from wastewater using bagasse fly ash—a sugar industry waste. Water Research 36, 2483–2490.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Beirut Arab University and especially the Lebanese Agricultural Research Institute for providing all research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami Al-Oweini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saad, R.A., Younes, G., El-Dakdouki, M.H. et al. Vanadium-Substituted Polyoxomolybdates for Methylene Blue Adsorption from Aqueous Solutions. J Clust Sci 33, 2077–2083 (2022). https://doi.org/10.1007/s10876-021-02130-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02130-4

Keywords

Navigation