Skip to main content

Advertisement

Log in

ALKBH5 Promotes the Proliferation of Glioma Cells via Enhancing the mRNA Stability of G6PD

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

This study aims to investigate the biological role of 6-methyladenine (m6A) methylation in inducing the carcinogenesis of glioma and its proliferation. Relative levels of ALKBH5 and glucose-6-phosphate dehydrogenase (G6PD) in glioma tissues and cell lines were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. Gain-of-function and loss-of-function approaches were used to investigate the role of ALKBH5 in mediating proliferation and energy metabolism of glioma cells. The regulatory effect of ALKBH5 on G6PD was analyzed using m6A-qRT-PCR. Our results showed that ALKBH5 was upregulated in glioma, which stimulated glioma cells to proliferate. Serving as a m6A eraser, ALKBH5 demethylated the target transcript G6PD and enhanced its mRNA stability, thereby promoting G6PD translation and activating the pentose phosphate pathway (PPP). Collectively, ALKBH5 stimulates glioma cells to proliferate through erasing the m6A methylation of G6PD, which can be utilized as a potential therapeutic target for glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Goodenberger ML, Jenkins RB (2012) Genetics of adult glioma. Cancer Genet 205:613–621

    Article  CAS  Google Scholar 

  2. Thakkar JP, Prabhu VC, Peters KB, Lukas RV (2021) What is new in neuro-oncology? Neurol Clin 39:163–179

    Article  Google Scholar 

  3. Bagherian A, Mardani R, Roudi B, Taghizadeh M, Banfshe HR, Ghaderi A, Davoodvandi A, Shamollaghamsari S, Hamblin MR, Mirzaei H (2020) Combination therapy with nanomicellar-curcumin and temozolomide for in vitro therapy of glioblastoma multiforme via wnt signaling pathways. J Mol Neurosci 70:1471–1483

    Article  CAS  Google Scholar 

  4. Dadgostar E, Fallah M, Izadfar F, Heidari-Soureshjani R, Aschner M, Tamtaji OR, Mirzaei H (2021) Therapeutic potential of resveratrol in the treatment of glioma: insights into its regulatory mechanisms. Mini Rev Med Chem. https://doi.org/10.2174/1389557521666210406164758

    Article  PubMed  Google Scholar 

  5. Ghaemmaghami AB, Mahjoubin-Tehran M, Movahedpour A, Morshedi K, Sheida A, Taghavi SP, Mirzaei H, Hamblin MR (2020) Role of exosomes in malignant glioma: microRNAs and proteins in pathogenesis and diagnosis. Cell Commun Signal 18:120

    Article  CAS  Google Scholar 

  6. Shabaninejad Z, Pourhanifeh MH, Movahedpour A, Mottaghi R, Nickdasti A, Mortezapour E, Shafiee A, Hajighadimi S, Moradizarmehri S, Sadeghian M, Mousavi SM, Mirzaei H (2020) Therapeutic potentials of curcumin in the treatment of glioblstoma. Eur J Med Chem 188:112040

    Article  CAS  Google Scholar 

  7. Khani P, Nasri F, Khani CF, Saeidi F, Sadri NJ, Tabibkhooei A, Mirzaei H (2019) Genetic and epigenetic contribution to astrocytic gliomas pathogenesis. J Neurochem 148:188–203

    Article  CAS  Google Scholar 

  8. Hu J, Xiao Q, Dong M, Guo D, Wu X, Wang B (2020) Glioblastoma immunotherapy targeting the innate immune checkpoint CD47-SIRPalpha axis. Front Immunol 11:593219

    Article  CAS  Google Scholar 

  9. Jiang P, Du W, Wu M (2014) Regulation of the pentose phosphate pathway in cancer. Protein Cell 5:592–602

    Article  CAS  Google Scholar 

  10. Kowalik MA, Columbano A, Perra A (2017) Emerging role of the pentose phosphate pathway in hepatocellular carcinoma. Front Oncol 7:87

    Article  Google Scholar 

  11. Gorrini C, Harris IS, Mak TW (2013) Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 12:931–947

    Article  CAS  Google Scholar 

  12. Zhang C, Zhang Z, Zhu Y, Qin S (2014) Glucose-6-phosphate dehydrogenase: a biomarker and potential therapeutic target for cancer. Anticancer Agents Med Chem 14:280–289

    Article  CAS  Google Scholar 

  13. Yang CA, Huang HY, Lin CL, Chang JG (2018) G6PD as a predictive marker for glioma risk, prognosis and chemosensitivity. J Neurooncol 139:661–670

    Article  CAS  Google Scholar 

  14. Globisch D, Pearson D, Hienzsch A, Bruckl T, Wagner M, Thoma I, Thumbs P, Reiter V, Kneuttinger AC, Muller M, Sieber SA, Carell T (2011) Systems-based analysis of modified tRNA bases. Angew Chem Int Ed Engl 50:9739–9742

    Article  CAS  Google Scholar 

  15. He C (2010) Grand challenge commentary: RNA epigenetics? Nat Chem Biol 6:863–865

    Article  CAS  Google Scholar 

  16. Desrosiers R, Friderici K, Rottman F (1974) Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci USA 71:3971–3975

    Article  CAS  Google Scholar 

  17. Cui Q, Shi H, Ye P, Li L, Qu Q, Sun G, Sun G, Lu Z, Huang Y, Yang CG, Riggs AD, He C, Shi Y (2017) m(6)A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep 18:2622–2634

    Article  CAS  Google Scholar 

  18. Mochizuki S, Okada Y (2007) ADAMs in cancer cell proliferation and progression. Cancer Sci 98:621–628

    Article  CAS  Google Scholar 

  19. Zhang S, Zhao BS, Zhou A, Lin K, Zheng S, Lu Z, Chen Y, Sulman EP, Xie K, Bogler O, Majumder S, He C, Huang S (2017) m(6)A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell 31:591–606

    Article  CAS  Google Scholar 

  20. Xuan JJ, Sun WJ, Lin PH, Zhou KR, Liu S, Zheng LL, Qu LH, Yang JH (2018) RMBase v2.0: deciphering the map of RNA modifications from epitranscriptome sequencing data. Nucleic Acids Res 46:D327–D334

    Article  CAS  Google Scholar 

  21. Chandola U, Das R, Panda B (2015) Role of the N6-methyladenosine RNA mark in gene regulation and its implications on development and disease. Brief Funct Genomics 14:169–179

    Article  CAS  Google Scholar 

  22. Heyn H, Esteller M (2015) An adenine code for DNA: a second life for N6-methyladenine. Cell 161:710–713

    Article  CAS  Google Scholar 

  23. Loos RJ, Yeo GS (2014) The bigger picture of FTO: the first GWAS-identified obesity gene. Nat Rev Endocrinol 10:51–61

    Article  CAS  Google Scholar 

  24. Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vagbo CB, Shi Y, Wang WL, Song SH, Lu Z, Bosmans RP, Dai Q, Hao YJ, Yang X, Zhao WM, Tong WM, Wang XJ, Bogdan F, Furu K, Fu Y, Jia G, Zhao X, Liu J, Krokan HE, Klungland A, Yang YG, He C (2013) ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49:18–29

    Article  CAS  Google Scholar 

  25. Thalhammer A, Bencokova Z, Poole R, Loenarz C, Adam J, O’Flaherty L, Schodel J, Mole D, Giaslakiotis K, Schofield CJ, Hammond EM, Ratcliffe PJ, Pollard PJ (2011) Human AlkB homologue 5 is a nuclear 2-oxoglutarate dependent oxygenase and a direct target of hypoxia-inducible factor 1alpha (HIF-1alpha). PLoS ONE 6:e16210

    Article  CAS  Google Scholar 

  26. Zhang C, Samanta D, Lu H, Bullen JW, Zhang H, Chen I, He X, Semenza GL (2016) Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m(6)A-demethylation of NANOG mRNA. Proc Natl Acad Sci USA 113:E2047–E2056

    Article  Google Scholar 

  27. Mathupala SP, Rempel A, Pedersen PL (1997) Aberrant glycolytic metabolism of cancer cells: a remarkable coordination of genetic, transcriptional, post-translational, and mutational events that lead to a critical role for type II hexokinase. J Bioenerg Biomembr 29:339–343

    Article  CAS  Google Scholar 

  28. Wood T (1986) Physiological functions of the pentose phosphate pathway. Cell Biochem Funct 4:241–247

    Article  CAS  Google Scholar 

  29. Chen H, Yue JX, Yang SH, Ding H, Zhao RW, Zhang S (2009) Overexpression of transketolase-like gene 1 is associated with cell proliferation in uterine cervix cancer. J Exp Clin Cancer Res 28:43

    Article  CAS  Google Scholar 

  30. Yang HC, Wu YH, Yen WC, Liu HY, Hwang TL, Stern A, Chiu DT (2019) The redox role of G6PD in cell growth, cell death, and cancer. Cells 8:1055

    Article  CAS  Google Scholar 

  31. Kuo W, Lin J, Tang TK (2000) Human glucose-6-phosphate dehydrogenase (G6PD) gene transforms NIH 3T3 cells and induces tumors in nude mice. Int J Cancer 85:857–864

    Article  CAS  Google Scholar 

  32. Batetta B, Bonatesta RR, Sanna F, Putzolu M, Mulas MF, Collu M, Dessi S (2002) Cell growth and cholesterol metabolism in human glucose-6-phosphate dehydrogenase deficient lymphomononuclear cells. Cell Prolif 35:143–154

    Article  CAS  Google Scholar 

  33. Li D, Zhu Y, Tang Q, Lu H, Li H, Yang Y, Li Z, Tong S (2009) A new G6PD knockdown tumor-cell line with reduced proliferation and increased susceptibility to oxidative stress. Cancer Biother Radiopharm 24:81–90

    Article  CAS  Google Scholar 

  34. Tian WN, Braunstein LD, Pang J, Stuhlmeier KM, Xi QC, Tian X, Stanton RC (1998) Importance of glucose-6-phosphate dehydrogenase activity for cell growth. J Biol Chem 273:10609–10617

    Article  CAS  Google Scholar 

  35. Kekec Y, Paydas S, Tuli A, Zorludemir S, Sakman G, Seydaoglu G (2009) Antioxidant enzyme levels in cases with gastrointesinal cancer. Eur J Intern Med 20:403–406

    Article  CAS  Google Scholar 

  36. Wang J, Duan Z, Nugent Z, Zou JX, Borowsky AD, Zhang Y, Tepper CG, Li JJ, Fiehn O, Xu J, Kung HJ, Murphy LC, Chen HW (2016) Reprogramming metabolism by histone methyltransferase NSD2 drives endocrine resistance via coordinated activation of pentose phosphate pathway enzymes. Cancer Lett 378:69–79

    Article  CAS  Google Scholar 

  37. Tekade RK, Sun X (2017) The Warburg effect and glucose-derived cancer theranostics. Drug Discov Today 22:1637–1653

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Scientific Research Fund Project of Hebei Provincial Health Commission (20211353).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifeng Liu.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Chen, Y., Wang, L. et al. ALKBH5 Promotes the Proliferation of Glioma Cells via Enhancing the mRNA Stability of G6PD. Neurochem Res 46, 3003–3011 (2021). https://doi.org/10.1007/s11064-021-03408-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03408-9

Keywords

Navigation