Skip to main content
Log in

Heavy Metals Accumulation in Dragonflies (Odonata) and Their Habitats in District Swabi, Khyber Pakhtunkhwa, Pakistan: Assessing Dragonfly Bionomics in the Region

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The current study aimed to examine the bionomics of dragonflies and heavy metal accumulation in their bodies and environment (sediments and water) from district Swabi, Khyber Pakhtunkhwa, Pakistan. A total of 1683 dragonflies were collected from May to September, 2018 in 4 tehsils (administrative subdivisions) of district. Orthetrum pruinosum neglectum was the most abundant species followed by O. anceps and O. chrysostigma luzonicum. Highest abundance was observed in July and August corresponding to maximum temperature and rainfall. Dragonflies displayed preferable abundance within agricultural lands and on elevation ranging from 206 to 506 m. Heavy metal analysis of sediments and water samples from 4 tehsils showed significant differences in mean concentrations of Pb, Zn, Cu, and Fe. Abundance among districts was negatively associated with Fe levels in water while the species diversity had a significant positive relationship with Fe in sediments. Accumulation of metals in each body part significantly varied among species. N. tullia tullia and O. anceps specifically demonstrated their tolerance to high concentrations of heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ali M, Khan F, Khan I, Ali W, Sara S (2018) Soil and water conservation practices in District Swabi, KP, Pakistan. Adv Crop Sci Tech 6(366):2

    Google Scholar 

  • Amiard-Triquet C, Amiard J-C, Rainbow PS (2013) Conclusions: biomarkers in environmental risk assessment. Ecological biomarkers: indicators of ecotoxicological effects. CRC Press, Boca Raton, pp 411–434

    Google Scholar 

  • Anderson FJ, Raimundo R, Figueiredo D, Correia M (2010) Abundance and diversity of dragonflies four years after the construction of a reservoir. Limnetica 29(2):0279–0286

    Google Scholar 

  • Asahina S (1984) Himalayan dragonflies of the genus Sympetrum (Odonata, Libellulidae). Bull Nat Sci Museum Ser A Zool 10(3):121–133

    Google Scholar 

  • Azam I, Afsheen S, Zia A, Javed M, Saeed R, Sarwar MK, Munir B (2015) Evaluating insects as bioindicators of heavy metal contamination and accumulation near industrial area of Gujrat, Pakistan. BioMed Res Int. https://doi.org/10.1155/2015/942751

    Article  Google Scholar 

  • Badejo O, Leskinen JT, Koistinen A, Sorvari J (2020) Urban environment and climate condition-related phenotypic plasticity of the common wasp Vespula vulgaris. Bull Insectol 73(2):285–294

    Google Scholar 

  • Ballan-Dufrançais C (2002) Localization of metals in cells of pterygote insects. Microscopy research technique 56(6):403–420

    Article  Google Scholar 

  • Blair RB, Launer AE (1997) Butterfly diversity and human land use: species assemblages along an urban grandient. Biol Cons 80(1):113–125

    Article  Google Scholar 

  • Borisov S (2006) Adaptations of dragonflies (Odonata) under desert conditions. Entomol Rev 86(5):534–543

    Article  Google Scholar 

  • Buchwald R (1992) Vegetation and dragonfly fauna—characteristics and examples of biocenological field studies. Vegetatio 101(2):99–107

    Google Scholar 

  • Bush ER, Baker SE, Macdonald DW (2014) Global trade in exotic pets 2006–2012. Biol Cons 28(3):663–676

    Article  Google Scholar 

  • Cervera A, Maymo A, Sendra M, Martinez-Pardo R, Garcera M (2004) Cadmium effects on development and reproduction of Oncopeltus fasciatus (Heteroptera: Lygaeidae). J Insect Physiol 50(8):737–749

    Article  CAS  Google Scholar 

  • Chaudhry M (2010) Biosystematics of dragonflies (Anisoptera: Odonata) of Pakistan. PhD Thesis, Pir Mehr Ali Shah Arid Agricultural University, Rawalpindi, Pakistan

  • Chessman BC (2009) Climatic changes and 13-year trends in stream macroinvertebrate assemblages in New South Wales, Australia. Glob Change Biol 15(11):2791–2802

    Article  Google Scholar 

  • Clark TE, Samways MJ (1996) Dragonflies (Odonata) as indicators of biotope quality in the Kruger National Park, South Africa. J Appl Ecol 33:1001–1012

    Article  Google Scholar 

  • Clausnitzer V, Kalkman VJ, Ram M, Collen B, Baillie JE, Bedjanič M, Darwall WR, Dijkstra K-DB, Dow R, Hawking J (2009) Odonata enter the biodiversity crisis debate: the first global assessment of an insect group. Biol Cons 142(8):1864–1869

    Article  Google Scholar 

  • Corbi JJ, Trivinho-Strixino S (2008) Relationship between sugar cane cultivation and stream macroinvertebrate communities. Braz Arch Biol Technol 51(4):569–579

    Article  Google Scholar 

  • Corbi JJ, Trivinho-Strixino S, Dos Santos A (2008) Environmental evaluation of metals in sediments and dragonflies due to sugar cane cultivation in Neotropical streams. Water Air Soil Pollut 195(1):325–333

    Article  CAS  Google Scholar 

  • Corbi JJ, Froehlich CG, Strixino ST, Santos AD (2010) Bioaccumulation of metals in aquatic insects of streams located in areas with sugar cane cultivation. Química Nova 33(3):644–648

    Article  CAS  Google Scholar 

  • DePaula FC, Mozeto AA (2001) Biogeochemical evolution of trace elements in a pristine watershed in the Brazilian southeastern coastal region. Appl Geochem 16(9–10):1139–1151

    Article  CAS  Google Scholar 

  • Dolný A, Bárta D, Lhota S, Drozd P (2011) Dragonflies (Odonata) in the Bornean rain forest as indicators of changes in biodiversity resulting from forest modification and destruction. Trop Zool 24(1):63

    Google Scholar 

  • Du J, Mu H, Song H, Yan S, Gu Y, Zhang J (2008) 100 years of sediment history of heavy metals in Daya Bay, China. Water Air Soil Pollut 190(1):343–351

    Article  CAS  Google Scholar 

  • Dudgeon D, Arthington AH, Gessner MO, Kawabata Z-I, Knowler DJ, Lévêque C, Naiman RJ, Prieur-Richard A-H, Soto D, Stiassny ML (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81(2):163–182

    Article  Google Scholar 

  • Ehikhamele IE, Ogbogu SS (2016) Assessment of the concentrations of some heavy metals and their effects on the macroinvertebrate composition in Igun southwestern Nigeria, using reference site approach. J Entomol Zool Stud 5(1):452–458

    Google Scholar 

  • Fleishman E, Murphy DD (2009) A realistic assessment of the indicator potential of butterflies and other charismatic taxonomic groups. Conserv Biol 23(5):1109–1116

    Article  Google Scholar 

  • Forman RT (2014) Urban ecology: science of cities. Cambridge University Press, New York

    Google Scholar 

  • Fulan JA, Raimundo R, Figueiredo D (2008) Habitat characteristics and dragonflies (Odonata) diversity and abundance in the Guadiana River, eastern of the Alentejo, Portugal. Boletin de la Asociacion Espanol de Entomoloia 32(3–4):327–340

    Google Scholar 

  • Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, Briggs JM (2008) Global change and the ecology of cities. Science 319(5864):756–760. https://doi.org/10.1126/science.1150195

    Article  CAS  Google Scholar 

  • Harabiš F, Dolný A (2010) Ecological factors determining the density-distribution of Central European dragonflies (Odonata). Eur J Entomol 107(4):571–577

    Article  Google Scholar 

  • Hill MO (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54(6):427–432. https://doi.org/10.2307/1934352

    Article  Google Scholar 

  • Hodkinson ID, Jackson JK (2005) Terrestrial and aquatic invertebrates as bioindicators for environmental monitoring, with particular reference to mountain ecosystems. Environ Manag 35:649–666. https://doi.org/10.1007/s00267-004-211-x

    Article  Google Scholar 

  • Jeremiason JD, Reiser T, Weitz R, Berndt M, Aiken GR (2016) Aeshnid dragonfly larvae as bioindicators of methylmercury contamination in aquatic systems impacted by elevated sulfate loading. Ecotoxicology 25(3):456–468. https://doi.org/10.1007/s10646-015-1603-9

    Article  CAS  Google Scholar 

  • Karouna-Renier NK, Sparling DW (2001) Relationships between ambient geochemistry, watershed land-use and trace metal concentrations in aquatic invertebrates living in stormwater treatment ponds. Environ Pollut 112(2):183–192. https://doi.org/10.1016/S0269-7491(00)00119-6

    Article  CAS  Google Scholar 

  • Markert B, Wappelhorst O, Weckert V, Herpin U, Siewers U, Friese K, Breulmann G (1999) The use of bioindicators for monitoring the heavy-metal status of the environment. J Radioanal Nucl Chem 240(2):425–429

    Article  CAS  Google Scholar 

  • McDonald RI (2008) Global urbanization: can ecologists identify a sustainable way forward? Front Ecol Environ 6(2):99–104

    Article  Google Scholar 

  • Notten M, Oosthoek A, Rozema J, Aerts R (2005) Heavy metal concentrations in a soil–plant–snail food chain along a terrestrial soil pollution gradient. Environ Pollut 138(1):178–190

    Article  CAS  Google Scholar 

  • Nummelin M, Lodenius M, Tulisalo E, Hirvonen H, Alanko T (2007) Predatory insects as bioindicators of heavy metal pollution. Environ Pollut 145(1):339–347

    Article  CAS  Google Scholar 

  • Paul MJ, Meyer JL (2001) Streams in the urban landscape. Annu Rev Ecol Syst 32:333–365. https://doi.org/10.1146/annurev.ecolsys.32.081501.114

    Article  Google Scholar 

  • Perveen F (2014) Check list of first recorded dragonfly (Odonata: Anisoptera) fauna of District Lower Dir, Khyber Pakhtunkhwa, Pakistan. Arthropods 3(2):120

    Google Scholar 

  • Pourang N (1996) Heavy metal concentrations in surficial sediments and benthic macroinvertebrates from Anzali wetland, Iran. Hydrobiologia 331(1):53–61

    Article  CAS  Google Scholar 

  • Raza KN (2015) Altitudinal variation affecting species distribution of dragonflies (Anisoptera: Odonata) in sub-himalayan hill tracts of Pakistan. M.Phil. Thesis, Department of Plant and environmental protection park institute of advance studies Quaide-i-Azam University, Islamabad, Pakistan

  • Richter O, Suhling F, Müller O, Kern D (2008) A model for predicting the emergence of dragonflies in a changing climate. Freshw Biol 53(9):1868–1880

    Article  Google Scholar 

  • Saiki MK, Martin BA, Thompson LD, Welsh D (2001) Copper, cadmium, and zinc concentrations in juvenile chinook salmon and selected fish-forage organisms (aquatic insects) in the upper Sacramento River, California. Water Air Soil Pollut 132(1):127–139

    Article  CAS  Google Scholar 

  • Schröder TJ (2005) Solid-solution partitioning of heavy metals in floodplain soils of the rivers Rhine and Meuse: Field sampling and geochemical modelling. PhD-thesis Wageningen University, The Netherlands ISBN 90-8504-310-7

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Simpson EH (1949) Measurement of diversity. Nature 163:688. https://doi.org/10.1038/163688a0

    Article  Google Scholar 

  • Skaldina O, Ciszek R, Peräniemi S, Kolehmainen M, Sorvari J (2020) Facing the threat: common yellowjacket wasps as indicators of heavy metal pollution. Environ Sci Pollut Res 27:29031–29042

    Article  CAS  Google Scholar 

  • Talarico F, Brandmayr P, Giulianini PG, Ietto F, Naccarato A, Perrotta E, Tagarelli A, Giglio A (2014) Effects of metal pollution on survival and physiological responses in Carabus (Chaetocarabus) lefebvrei (Coleoptera, Carabidae). Eur J Soil Biol 61:80–89. https://doi.org/10.1016/j.ejsobi.2014.02.003

    Article  CAS  Google Scholar 

  • Tariq CM (2010) Systematics of Dragonflies (Anisoptera: Odonata) of Pakistan. PhD Thesis submitted to Department of Entomology, Arid Agriculture University, Faculty of Crop and Food Sciences, Rawalpindi, Pakistan

  • Tollett V, Benvenutti E, Deer L, Rice T (2009) Differential toxicity to Cd, Pb, and Cu in dragonfly larvae (Insecta: Odonata). Arch Environ Contam Toxicol 56(1):77–84. https://doi.org/10.1007/s00244-008-9170-1

    Article  CAS  Google Scholar 

  • Van Praet N, De Bruyn L, De Jonge M, Vanhaecke L, Stoks R, Bervoets L (2014) Can damselfly larvae (Ischnura elegans) be used as bioindicators of sublethal effects of environmental contamination? Aquatic Toxicol 154:270–277. https://doi.org/10.1016/j.aquatox.2014.05.028

    Article  CAS  Google Scholar 

  • Villalobos-Jimenez G, Dunn A, Hassall C (2016) Dragonflies and damselflies (Odonata) in urban ecosystems: a review. Eur J Entomol 113:217–232. https://doi.org/10.14411/eje.2016.027

    Article  Google Scholar 

  • Willigalla C, Fartmann T (2012) Patterns in the diversity of dragonflies (Odonata) in cities across Central Europe. Eur J Entomol 109(2):235–245. https://doi.org/10.1144/eje.2012.031

    Article  Google Scholar 

  • Zia A, Rafi MA, Hussain Z, Naeem M (2009) Occurrence of Odonata in northern area of Pakistan with seven new records. Halteres 1(1):48–56

    Google Scholar 

Download references

Acknowledgements

We are grateful to Hirad Ali for his assistance and cooperation that made the collection in district Swabi possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khurshaid Khan.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14.6 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noor-Ul-Islam, H., Khan, K., Zia, S.A. et al. Heavy Metals Accumulation in Dragonflies (Odonata) and Their Habitats in District Swabi, Khyber Pakhtunkhwa, Pakistan: Assessing Dragonfly Bionomics in the Region. Bull Environ Contam Toxicol 107, 838–847 (2021). https://doi.org/10.1007/s00128-021-03338-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-021-03338-w

Keywords

Navigation