Skip to main content
Log in

Changes in the Composition of Celomic Fluid Metabolites of the Black Sea Urchin Mesocentrotus nudus (Echinoidea) and the Starfish Asterina pectinifera (Asteroidea) under Conditions of Hypoxia Stress

  • BIOCHEMISTRY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The composition of metabolites in the coelomic fluid of the starfish Asterina pectinifera and sea urchin Mesocentrotus nudus was studied under normal and hypoxic conditions using NMR spectroscopy. Their change after keeping animals under hypoxia was shown. Sea urchins revealed the presence of anaerobic metabolism, which intensifies under stress in conditions of hypoxia. No similar mechanism of energy metabolism has been found for the starfish. Under conditions of hypoxia, a significant increase in lactate, which is observed in sea urchins, is not observed in the composition of the coelomic liquid of starfish. Asterine tissues contain a mixture of carotenoids in large quantities, the most well-known of which is astaxanthin. The starfish Asterina pectinifera can be used as a raw material for new medicinal, cosmetic, and food products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Agar, N.S., Rae, C.D., Chapman, B.E., and Kuchel, P.W., 1H-NMR spectroscopic survey of plasma and erythrocytes from selected marsupials and domestic animals of Australia, Comp. Biochem. Physiol., 1991, vol. 99, pp. 575–597.

    CAS  Google Scholar 

  2. Artyukov, A.A., Rutskova, T.A., Kupera, E.V., Makhan’kov, V.V., Glazunov, V.P., and Kozlovskaya, E.P., A method for obtaining a carotenoid complex from starfish, RF Patent no. 2469732, 2012.

  3. Barrington, E.J.W., Invertebrate Structure and Function, London: Nelson, 1979, xiv, 2nd ed.

    Google Scholar 

  4. Braun, S., Kalinowski, H.-O., and Berger, S., 150 and More Basic NMR Experiments: A Practical Course, Weinheim: Wiley-VCH, 1998.

    Google Scholar 

  5. Chia, F. and Xing, J., Echinoderm coelomocytes, Zool. Stud., 1996, vol. 35, pp. 231–254.

    Google Scholar 

  6. Dai, Y., Prithiviraj, N., Gan, J., Zhang, X.A., and Yan, J., Tissue extract fractions from starfish undergoing regeneration promote wound healing and lower jaw blastema regeneration of zebrafish, Sci. Rep., 2016, vol. 6, article no. 38693. https://www.nature.com/articles/srep38693. https://doi.org/10.1038/srep38693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Drozdov, K.A., Vshivkova, T.S., Kholin, S.K., and Drozdov, A.L., Comparative analysis of caddisfly (Insecta, Trichoptera) herbivores and predators metabolites by NMR, in 3rd International Symposium of Benthological Society of Asia, Vladivostok, Russian Federation, August 24–27, 2016, Abstract Book, Vladivostok: Dalnauka, 2016, p. 51. ISBN 978-5-8044-1610-3.

  8. Drozdov, A.L., Artyukov, A.A., and Elkin, Yu.N., Cells and epidermis of sand dollar Scaphechinus mirabilis, Russ. J. Dev. Biol., 2017, vol. 48, no. 4, pp. 257–262.

    Article  CAS  Google Scholar 

  9. Goldstone, J.V., Hamdoun, A., Cole, B.J., Howard-Asby, M., Nebert, D.W., Scally, M., Dean, M., Epel, D., Hahn, M.E., and Stegeman, J.J., The chemical defensome: environmental sensing and response genes in the Strongylocentrotus purpuratus genome, Dev. Biol., 2006, vol. 300, pp. 366–384. https://doi.org/10.1016/j.ydbio.2006.08.066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hou Yakun, Vasileva, E.A., Carne, A., McConnell, M., Bekhit, A., El-Din, A., and Mishchenko, N.P., Naphthoquinones of the spinochrome class: occurrence, isolation, biosynthesis and biomedical applications, R. Soc. Chem. Adv., 2018, vol. 8, pp. 32637–32650.

    CAS  Google Scholar 

  11. Kas’yanov, V.L., Medvedeva, L.A., Yakovlev, S.N., and Yakovlev, Yu.M., Razmnozhenie iglokozhikh i dvustvorchatykh mollyuskov (Reproduction of Echinoderms and Bivalves), Moscow: Nauka, 1980.

  12. Kolokolova, T.N., Savel’ev, O.Yu., and Sergeev, N.M., Metabolic analysis of biological fluids using 1H-NMR spectroscopy, Zh. Anal. Khim., 2008, vol. 63, no. 2, pp. 118–136.

    Google Scholar 

  13. Lebedev, A.V., Ivanova, M.V., and Krasnovid, N.L., Interaction of natural polyhydroxy-1,4-naphthoquinones with superoxide anion-radical, Biochemistry, 1999, vol. 64, pp. 1273–1278.

    CAS  PubMed  Google Scholar 

  14. Liu, L., Zhu, Y., Li, J., Wang, M., Lee, P., Du, G., and Chen, J., Microbial production of propionic acid from propionibacteria: current state, challenges and perspectives, Crit. Rev. Biotech., 2012, vol. 32, no. 4, pp. 374–381.

    Article  CAS  Google Scholar 

  15. Nicholson, J.K. and Wilson, I.D., High resolution proton NMR spectroscopy of biological fluids, Prog. NMR Spectrosc., 1989, vol. 21, pp. 449–501.

    Article  CAS  Google Scholar 

  16. Novikov, V.L., Shestak, O.P., Mishchenko, N.P., Fedoreev, S.A., Vasileva, E.A., Glazunov, V.P., and Artyukov, A.A., Oxidation of 7-ethyl-2,3,5,6,8-pentahydroxy-1,4-naphthoquinone (echinochrome A) by atmospheric oxygen. 1. Structure of dehydroechinochrome, Russ. Chem. Bull., 2018, vol. 67, pp. 282–290.

    Article  CAS  Google Scholar 

  17. Prudnikova, T.N. and Roslyakov, Yu.F., Propionic acid in the metabolism of living organisms, Izv. Vuzov, Pishch. Tekhnol., 1994, nos. 5–6, pp. 23–27.

  18. Shang, X.H., Liu, X.Y., and Zhang, J., Traditional Chinese medicine–sea urchin, Mini. Rev. Med. Chem., 2014, vol. 14, no. 6, pp. 537–542. www.ncbi.nlm.nih.gov/pubmed/ 24873818.

    Article  CAS  Google Scholar 

  19. Smith, V.J., The echinoderms, in Invertebrate Blood Cells, Ratcliffe, N.A. and Rowley, A.F., Eds., London: Academic, 1981, vol. 2, pp. 513–562.

    Google Scholar 

  20. Vinnikova, V.V. and Drozdov, A.L., The ultrastructure of spines in sea urchins of the family Strongylocentrotidae, Biol. Bull., 2011, vol. 38, no. 9, pp. 861–867. https://doi.org/10.1134/S1062359011090093

    Article  Google Scholar 

  21. World Register of Marine Species: Mesocentrotus. htpp://www.marinespesies.org.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Drozdov.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drozdov, K.A., Artyukov, A.A. & Drozdov, A.L. Changes in the Composition of Celomic Fluid Metabolites of the Black Sea Urchin Mesocentrotus nudus (Echinoidea) and the Starfish Asterina pectinifera (Asteroidea) under Conditions of Hypoxia Stress. Biol Bull Russ Acad Sci 48, 407–412 (2021). https://doi.org/10.1134/S1062359021040075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359021040075

Navigation