Skip to main content
Log in

Three-Dimensional Version of Hill’s Problem with Variable Mass

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The purpose of the present paper is to investigate the motion’s properties of an infinitesimal body in three-dimensional version of Hill’s problem where the mass of the infinitesimal body is supposed to vary with time. As commonly done, the infinitesimal body is assumed to move under the influence of the other massive and oblate bodies that also have radiation effects. We suppose that the whole system is subject to a perturbation on Coriolis and on centrifugal forces. By using the various transformations, we extract the equations of motion and Jacobi quasi-integral. The properties like the locations of equilibrium points, regions of motion, surfaces with projection, trajectories allocation and the basins of attraction are investigated for various values of mass parameters. The stability is examined by using Meshcherskii space-time inverse transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

DATA AVAILABILITY

The data depicted in the table are used to support the findings of this study are included within the article.

REFERENCES

  1. A. Abdulraheem and J. Singh, Astrophys. Space Sci. 317, 9 (2008).

    Article  ADS  Google Scholar 

  2. E. I. Abouelmagd and S. M. El-Shaboury, Astrophys. Space Sci. 341, 331 (2012). http://dx.doi.org/10.1007/s10509-012-1093-7.

    Article  ADS  Google Scholar 

  3. E. I. Abouelmagd and A. Mostafa, Astrophys. Space Sci. 357, 58 (2015). http://dx.doi.org/10.1007/s10509-015-2294-7.

    Article  ADS  Google Scholar 

  4. E. I. Abouelmagd, A. A. Ansari, M. S. Ullah, and J. L. G. Guirao, The Astronomical Journal 160 (5), 216 (2020). http://dx.doi.org/10.3847/1538-3881/abb1bb.

    Article  ADS  Google Scholar 

  5. A. A. Ansari, Italian Journal of Pure and Applied Mathematics 38, 581 (2017).

    Google Scholar 

  6. A. A. Ansari, Applications and Applied Mathematics: An International Journal 13 (2), 818 (2018).

    Google Scholar 

  7. A. A. Ansari, New Astronomy 83 (2020a) http://dx.doi.org/10.1016/j.newast.2020.101496.

  8. A. A. Ansari, Sultan Qaboos University Journal for Science 25 (1), 61 (2020b).

    Google Scholar 

  9. A. A. Ansari and A. Mahtab, International Journal of Advanced Astronomy 5 (1), 19 (2017).

    Article  Google Scholar 

  10. A. A. Ansari and S. N. Prasad, Astron. Lett. 46, 275 (2020). http://dx.doi.org/10.1134/S1063773720040015

    Article  ADS  Google Scholar 

  11. A. A. Ansari, R. Kellil, A. Ali, and M. Alam, Applications and Applied Mathematics: An International Journal 14 (2), 985 (2019).

    Google Scholar 

  12. A. A. Ansari, K. R. Meena, and S. N. Prasad, Romanian Astron. J. 30, 135 (2020).

    Google Scholar 

  13. A. A. Ansari, M. Alam, K. R. Meena, and A. Ali, Appl. Math. Inf. Sci. 15 (2), 189 (2021).

    Article  Google Scholar 

  14. A. S. Beevi and R. K. Sharma, Astrophys. Space Sci. 340, 245–261 (2012). http://dx.doi.org/10.1007/s10509-012-1052-3.

    Article  ADS  Google Scholar 

  15. K. B. Bhatnagar and P. P. Hallan, Celest. Mech. 20, 95 (1979).

    Article  ADS  Google Scholar 

  16. F. Bouaziz-Kellil, Advances in Astronomy, 1 (2020).https://doi.org/10.1155/2020/6684728.

  17. C. N. Douskos, Astrophys. Space Sci. 326, 263 (2010).

    Article  ADS  Google Scholar 

  18. J. H. Jeans, Astronomy and Cosmogony (Cambridge University Press, Cambridge, 1928).

    MATH  Google Scholar 

  19. A. L. Kunitsyn, J. of Applied Mathematical Mechanics 65, 703 (2001).

    Article  ADS  Google Scholar 

  20. L. G. Lukyanov, Astronomy Letters 35 (5), 349 (2009).

    Article  ADS  Google Scholar 

  21. M. P. Markakis, A. E. Perdiou, and C. N. Douskos, Astrophys. Space Sci. 315 (2), 297 (2008).

    Article  ADS  Google Scholar 

  22. V. V. Markellos and A. E. Roy, Celestial Mechanics 23 (2), 269 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  23. V. V. Markellos, A. E. Roy, M. J. Velgakis, and S. S. Kanavos, Astrophys. Space Sci. 271 (2), 293 (2000).

    Article  ADS  Google Scholar 

  24. V. V. Markellos, A. E. Roy, E. A. Perdios, and C. N. Douskos, Astrophys. Space Sci. 278 (2), 295 (2001).

    Article  ADS  Google Scholar 

  25. I. V. Meshcherskii, Works on the Mechanics of Bodies of Variable Mass (GITTL, Moscow, 1949).

    MATH  Google Scholar 

  26. A. E. Perdiou, V. V. Markellos, and C. N. Douskos, Earth, Moon, and Planets 97, 127 (2006). https://doi.org/10.1007/s11038-006-9065-y.

    Article  ADS  Google Scholar 

  27. R. K. Sharma and P. V. SubbaRao, Celest. Mech. 13, 137 (1976). http://dx.doi.org/10.1007/BF01232721.

    Article  ADS  Google Scholar 

  28. J. Singh and B. Ishwar, Celest. Mech. 35, 201 (1985).

    Article  ADS  Google Scholar 

  29. J. Singh and J. J. Taura, Astrophys. Space Sci. 343, 95 (2013). http://dx.doi.org/10.1007/s10509-012-1225-0.

    Article  ADS  Google Scholar 

  30. V. Szebehely, Theory of Orbits (Academic Press, New York, 1967).

    MATH  Google Scholar 

  31. M. J. Zhang, C. Y. Zhao, and Y. Q. Xiong, Astrophys. Space Sci. 337, 107 (2012). http://dx.doi.org/10.1007/s10509-011-0821-8.

    Article  ADS  Google Scholar 

  32. E. E. Zotos, Astrophys. Space Sci. 362, 190 (2017). https://doi.org/10.1007/s10509-017-3169-x.

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is thankful to the Deanship of Scientific Research, College of Science at Buraidha, Qassim University, Saudi Arabia, for providing all the research facilities in the completion of this research work. The author wishes to express her sincere thanks to referees who provided precious expertise that greatly helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferdous Bouaziz-Kellil.

Ethics declarations

The author declares that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouaziz-Kellil, F. Three-Dimensional Version of Hill’s Problem with Variable Mass. Astron. Lett. 47, 262–276 (2021). https://doi.org/10.1134/S1063773721040034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773721040034

Keywords:

Navigation