Skip to main content
Log in

A second-derivative functionally fitted method of maximal order for oscillatory initial value problems

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper deals with the construction of a functionally fitted method for solving first-order differential systems whose solutions present an oscillatory behaviour. The method incorporates the second derivative to obtain better accuracies and is developed on the basis that it provides no errors when the true solution is a linear combination of some trigonometric and exponential functions containing a parameter. The main properties of the method are presented, showing a fourth-order convergence. Some numerical experiments are included to show the good performance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  • Abdulganiy RI, Akinfenwa OA, Okunuga SA, Oladimeji GO (2017a) A robust block hybrid trigonometric method for the numerical integration of oscillatory second order nonlinear initial value problems. AMSE J AMSE IIETA Publ Ser Adv A 54:497–518

  • Abdulganiy RI, Akinfenwa OA, Okunuga SA (2017b) Maximal order block trigonometrically fitted scheme for the numerical treatment of second order initial value problem with oscillating solutions. Int J Math Anal Optim 2017:168–186

  • Abdulganiy RI, Akinfenwa OA, Okunuga SA (2018) Construction of L stable second derivative trigonometrically fitted block backward differentiation formula for the solution of oscillatory initial value problems. Afr J Sci Technol Innov Dev 10(4):411–419. https://doi.org/10.1080/20421338.2018.1467859

    Article  Google Scholar 

  • Brugnano L, Triginate D (1988) Solving differential problems by multistep initial and boundary value methods. Gordon and Beach, Amsterdam

    Google Scholar 

  • Butcher JC (2008) Numerical methods for ordinary differential equations. Wiley, England

    Book  Google Scholar 

  • Cash JR (1984) Efficient P-stable methods for periodic initial value problems. BITs 24:248–252

    Article  MathSciNet  Google Scholar 

  • Coleman JP, Duxbury SC (2000) Mixed collocation methods for \(y^{\prime \prime }= f(x, y)\). J Comput Appl Math 126:47–75

    Article  MathSciNet  Google Scholar 

  • Coleman JP, Ixaru LG (1996) P-stability and exponential fitting methods for \(y^{\prime \prime }=f(x,y)\). IMA J Numer Anal 16:179–199

    Article  MathSciNet  Google Scholar 

  • Conte D, Mohammadi F, Moradi L, Paternoster B (2020) Exponentially fitted two-step peer methods for oscillatory problems. Comput Appl Math 39:174. https://doi.org/10.1007/s40314-020-01202-x

    Article  MathSciNet  MATH  Google Scholar 

  • Duxbury SC (1999) Mixed collocation methods for \(y^{\prime \prime }= f(x, y)\). Durham University, Durham theses

  • Ehigie JO, Jator SN, Okunuga SA (2017) A multi-point integrator with trigonometric coefficients for initial value problems with periodic solutions. Numer Anal Appl 10(3):329–344

    Article  MathSciNet  Google Scholar 

  • Enright WH (1974) Second derivative multistep method for stiff ODEs. SIAM J Numer Anal 11(2):321–331

    Article  MathSciNet  Google Scholar 

  • Fang Y, Wu X (2008) A trigonometrically fitted explicit Numerov-type method for second order initial value problems with oscillating solutions. Appl Numer Math 58:341–351

    Article  MathSciNet  Google Scholar 

  • Fang Y, Song Y, Wu X (2009) A robust trigonometrically fitted embedded pair for perturbed oscillators. J Comput Appl Math 225:347–355

    Article  MathSciNet  Google Scholar 

  • Fatunla SO (1991) Block methods for second order ODEs. Int J Comput Math 41:55–63

    Article  Google Scholar 

  • Franco JM (2002) An embedded pair of exponentially-fitted explicit Runge-Kutta methods. J Comput Appl Math 149:407–414

    Article  MathSciNet  Google Scholar 

  • Franco JM (2003) Exponentially-fitted explicit Runge–Kutta–Nystrom methods. J Comput Appl Math 167:1–19

    Article  MathSciNet  Google Scholar 

  • Franco JM (2006) A class of explicit two-step hybrid methods for second-order IVPs. J Comput Appl Math 187:41–57

    Article  MathSciNet  Google Scholar 

  • Gautschi W (1961) Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer Math 3:381–397

    Article  MathSciNet  Google Scholar 

  • Ixaru LG, Vanden Berghe G, Van Daele M (2002) Frequency evaluation in exponentially-fitted algorithms for ODEs. J Comput Appl Math 140:423–434

    Article  MathSciNet  Google Scholar 

  • Jator SN (2010) Solving second order initial value problems by a hybrid multistep method without predictors. Appl Math Comput 277:4036–4046

    MathSciNet  MATH  Google Scholar 

  • Jator SN, Oladejo HB (2017) Block Nystrom method for singular differential equations of the Lane-Emdem Type and problems with highly oscillatory solutions. Int J Appl Comput Math. https://doi.org/10.1007/s40819-017-0425-2

    Article  Google Scholar 

  • Jator SN, Swindell S, French RD (2013) Trigonmetrically fitted block Numerov type method for. Numer Algorithm 62:13–26

    Article  Google Scholar 

  • Konguetsof A, Simos TE (2003) An exponentially-fitted and trigonometrically-fitted methods for the numerical integration of periodic initial value problems. Comput Math Appl 45:547–554

    Article  MathSciNet  Google Scholar 

  • Lambert JD (1973) Computational methods in ordinary differential system, the initial value problem. Wiley, New York

    Google Scholar 

  • Lambert JD (1991) Numerical methods for ordinary differential equations. Wiley, New York

    MATH  Google Scholar 

  • Lambert JD, Watson IA (1976) Symmetric multistep methods for periodic initial value problems. J Inst Math Appl 18:189–202

    Article  MathSciNet  Google Scholar 

  • Martin-Vaquero J, Vigo-Aguiar J (2008) Exponential fitted Gauss, Radau and Lobatto methods of low order. Numer Algorithm 48:327–346

    Article  MathSciNet  Google Scholar 

  • Monovasilis T, Kalogiratou Z, Ramos H, Simos TE (2017) Modified two-step hybrid methods for the numerical integration of oscillatory problems. Math Methods Appl Sci 40(14):5286–5294

    Article  MathSciNet  Google Scholar 

  • Ndukum PL, Biala TA, Jator SN, Adeniyi RB (2016) On a family of trigonometrically fitted extended backward differentiation formulas for stiff and oscillatory initial value problems. Numer Algorithms (2016). https://doi.org/10.1007/s11075-016-0148-1

  • Neta B (1986) Families of backward differentiation methods based on trigonometric polynomials. Int J Comput Math 20:67–75

    Article  Google Scholar 

  • Neta B, Ford CH (1984) Families of methods for ordinary differential equations based on trigonometric polynomials. J Comput Appl Math 10:33–38

    Article  MathSciNet  Google Scholar 

  • Nguyen HS, Sidje RB, Cong NH (2006) On functionally-fitted Runge–Kutta methods. BIT Numer Math 46:861–874. https://doi.org/10.1007/s10543-006-0092-x

    Article  MathSciNet  MATH  Google Scholar 

  • Nguyen HS, Sidje RB, Cong NH (2007) Analysis of trigonometric implicit Runge–Kutta methods. J Comput Appl Math 198:187–207

    Article  MathSciNet  Google Scholar 

  • Ngwane FF, Jator SN (2013) Solving oscillatory problems using a block hybrid trigonmetrically fitted method with two off-step points. Texas State University. San Marcos. Electron J Differ Equation 20:119–132

  • Ngwane FF, Jator SN (2015) A family of trigonometrically fitted enright second derivative methods for stiff and oscillatory initial value problems. J Appl Math

  • Ngwane FF, Jator SN (2014) Trigonometrically-fitted second derivative method for oscillatory problems. Springer Plus 3:304

    Article  Google Scholar 

  • Ramos H, Vigo-Aguiar J (2010) On the frequency choice in trigonometrically fitted methods. Appl Math Lett 23:1378–1381

    Article  MathSciNet  Google Scholar 

  • Ramos H, Vigo-Aguiar J (2014) A trigonometrically-fitted method with two frequencies, one for the solution and another one for the derivative. Comput Phys Commun 185(4):1230–1236. https://doi.org/10.1016/j.cpc.2013.12.021

    Article  MathSciNet  MATH  Google Scholar 

  • Sanugi BB, Evans DJ (1989) The numerical solution of oscillatory problems. Int J Comput Math 31:237–255

    Article  Google Scholar 

  • Sunday J, Skwane Y, Odekunle MR (2013) A continuous block integrator for the solution of stiff and oscillatory differential equations. IOSR J Math 8:75–80

    Google Scholar 

  • Thomas RM (1988) Efficient sixth order methods for nonlinear oscillation problems. BITs 28:898–903

    Article  MathSciNet  Google Scholar 

  • Vanden Berghe G, Ixaru LG, Van Daele M (2001) Optimal implicit exponentially fitted Runge–Kutta methods. Comput Phys Commun 140:346–357

    Article  Google Scholar 

  • Vanden Berhe G, Van Daele M (2007) Exponentially-fitted Numerov methods. J Comput Appl Math 200:140–153

    Article  MathSciNet  Google Scholar 

  • Vigo-Aguiar J, Ramos H (2014) A strategy for selecting the frequency in trigonometrically-fitted methods based on the minimization of the local truncation error and the total energy error. J Math Chem 52:1050–1058

    Article  MathSciNet  Google Scholar 

  • Vigo-Aguiar J, Ramos H (2015) On the choice of the frequency in trigonometrically fitted methods for periodic problems. J Comput Appl Math 277:94–105

    Article  MathSciNet  Google Scholar 

  • Vigo-Aguiar J, Simos TE (2001) An exponentially fitted and trigonometrically-fitted method for the numerical solution of orbital problems. Astron J 122(3):1656–1660

    Article  Google Scholar 

  • Xiang K, Thomas RM (2002) Efficient sixth order P-stable methods with minimal local truncation error for \(y^{\prime \prime }= f(x, y)\). J Comput Appl Math 20:175–184

    MathSciNet  MATH  Google Scholar 

  • Yakubu DG, Aminu M, Tumba P, Abdulhameed M (2018) An efficient family of second derivative runge-kutta collocation methods for oscillatory systems. J Niger Math Soc 37(2):111–138

    MathSciNet  Google Scholar 

  • You X, Chen B (2013) Symmetric and symplectic exponentially-Fitted Runge–Kutta–Nystrom methods for Hamiltonian Problems. Math Comput Simul 94:76–95

    Article  MathSciNet  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. I. Abdulganiy.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Code availability

Not applicable.

Additional information

Communicated by Jose Alberto Cuminato.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulganiy, R.I., Akinfenwa, O.A., Ramos, H. et al. A second-derivative functionally fitted method of maximal order for oscillatory initial value problems. Comp. Appl. Math. 40, 188 (2021). https://doi.org/10.1007/s40314-021-01582-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-021-01582-8

Keywords

Mathematics Subject Classification

Navigation