Skip to main content
Log in

Simultaneous Visualization of Mitochondria and Lysosome by a Single Cyanine Dye: The Impact of the Donor Group (-NR2) Towards Organelle Selectivity

  • Short Communication
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A benzothiazolium-based hemicyanine dye (probe 3) has been synthesized by attaching a morpholine group into a phenyl benzothiazolium skeleton. Probe 3 exhibited interesting photophysical characteristics including red emission (λem ≈600 nm), enhanced Stokes shift (Δλ ≈80 nm) and sensitivity to solvent polarity. Although the probe 3 exhibited almost no emission in aqueous environments (φfl ≈0.002), its fluorescence could be increased by ≈50 fold in organic solvents (φfl ≈0.10), making it possible for live cell imaging under wash-free conditions. Probe 3 exhibited excellent ability to visualize cellular mitochondria and lysosomes simultaneously, as observed from fluorescence confocal microscopy. In addition, probe 3 also exhibited good biocompatibility (calculated LC50 > 20 µM) and high photostability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability

All data generated during this study are included in this published article (and its supplementary information files).

References

  1. Alberts B, Bray D, Hopkin K et al (2013) Essential cell biology, 4th ed. Garland Science

  2. Johnson LV, Walsh ML, Chen LB (1980) Localization of mitochondria in living cells with rhodamine 123. Proc Natl Acad Sci 77:990–994

    Article  CAS  Google Scholar 

  3. Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81:871–927

    Article  CAS  Google Scholar 

  4. Yapici NB, Bi Y, Li P et al (2015) Highly stable and sensitive fluorescent probes (LysoProbes) for lysosomal labeling and tracking. Sci Rep 5: 8576

  5. Parkinson-Lawrence EJ, Shandala T, Prodoehl M et al (2010) Lysosomal storage disease: revealing lysosomal function and physiology. Physiology 25:102–115

    Article  CAS  Google Scholar 

  6. Hönscheid P, Datta K, Muders MH (2014) Autophagy: detection, regulation and its role in cancer and therapy response. Int J Radiat Biol 90:628–635

    Article  Google Scholar 

  7. Jiang P, Mizushima N (2014) Autophagy and human diseases. Cell Res 24:69

    Article  CAS  Google Scholar 

  8. Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 148:1145–1159

    Article  CAS  Google Scholar 

  9. Sospedra M, Martin R (2005) Immunology of multiple sclerosis. Annu Rev Immunol 23:683–747

    Article  CAS  Google Scholar 

  10. Neto BAD, Carvalho PHPR, Santos DCBD et al (2012) Synthesis, properties and highly selective mitochondria staining with novel, stable and superior benzothiadiazole fluorescent probes. Rsc Adv 2:1524–1532

    Article  CAS  Google Scholar 

  11. Perry SW, Norman JP, Barbieri J et al (2011) Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques 50:98–115. https://doi.org/10.2144/000113610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Piao S, Amaravadi RK (2016) Targeting the lysosome in cancer. Ann N Y Acad Sci 1371:45–54

    Article  Google Scholar 

  13. Repnik U, Stoka V, Turk V, Turk B (2012) Lysosomes and lysosomal cathepsins in cell death. Biochim Biophys Acta - Proteins Proteomics 1824:22–33

    Article  CAS  Google Scholar 

  14. Withana NP, Blum G, Sameni M et al (2012) Cathepsin B inhibition limits bone metastasis in breast cancer. Cancer Res 72:1199–1209. https://doi.org/10.1158/0008-5472.CAN-11-2759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jensen SS, Aaberg-Jessen C, Christensen KG, Kristensen B (2013) Expression of the lysosomal-associated membrane protein-1 (LAMP-1) in astrocytomas. Int J Clin Exp Pathol 6:1294–1305

    PubMed  PubMed Central  Google Scholar 

  16. Saftig P, Schröder B, Blanz J (2010) Lysosomal membrane proteins: life between acid and neutral conditions. Biochem Soc Trans 38:1420–1423. https://doi.org/10.1042/BST0381420

    Article  CAS  PubMed  Google Scholar 

  17. Saftig P, Klumperman J (2009) Lysosome biogenesis and lysosomal membrane proteins: Trafficking meets function. Nat Rev Mol Cell Biol 10:623–635

    Article  CAS  Google Scholar 

  18. Groth-Pedersen L, Jäättelä M (2013) Combating apoptosis and multidrug resistant cancers by targeting lysosomes. Cancer Lett 332:265–274

    Article  CAS  Google Scholar 

  19. Schwake M, Schröder B, Saftig P (2013) Lysosomal Membrane Proteins and Their Central Role in Physiology. Traffic 14:739–748

    Article  CAS  Google Scholar 

  20. Yu M, Du W, Li H et al (2017) Near-infrared ratiometric fluorescent detection of arginine in lysosome with a new hemicyanine derivative. Biosens Bioelectron 92:385–389. https://doi.org/10.1016/j.bios.2016.10.090

    Article  CAS  PubMed  Google Scholar 

  21. Zhu H, Fan J, Xu Q et al (2012) Imaging of lysosomal pH changes with a fluorescent sensor containing a novel lysosome-locating group. Chem Commun 48:11766. https://doi.org/10.1039/c2cc36785h

    Article  CAS  Google Scholar 

  22. Pierzyska-Mach A, Janowski PA, Dobrucki JW (2014) Evaluation of acridine orange, LysoTracker Red, and quinacrine as fluorescent probes for long-term tracking of acidic vesicles. Cytom Part A 85:729-737 

  23. Bertman KA, Abeywickrama CS, Baumann HJ et al (2018) A fluorescent flavonoid for lysosome detection in live cells under “wash free” conditions. J Mater Chem B. https://doi.org/10.1039/c8tb00325d

    Article  PubMed  Google Scholar 

  24. Bertman KA, Abeywickrama CS, Ingle A et al (2019) A Fluorescent Flavonoid for Lysosome Imaging: the Effect of Substituents on Selectivity and Optical Properties. J Fluoresc 29:599–607

    Article  CAS  Google Scholar 

  25. Abeywickrama CS, Wijesinghe KJ, Stahelin RV, Pang Y (2019) Bright red-emitting highly reliable styryl probe with large stokes shift for visualizing mitochondria in live cells under wash-free conditions. Sensors Actuators B Chem 285:76–83

    Article  CAS  Google Scholar 

  26. Abeywickrama CS, Baumann HJ, Alexander N et al (2018) NIR-emitting benzothiazolium cyanines with an enhanced stokes shift for mitochondria imaging in live cells. Org Biomol Chem 16:3382–3388

    Article  CAS  Google Scholar 

  27. Abeywickrama CS, Bertman KA, McDonald L et al (2019) Synthesis of highly selective lysosome markers by coupling 2-(2’-Hydroxyphenyl) benzothiazole (HBT) with benzothiazolium cyanine (Cy): The impact of substituents towards selectivity and optical properties. J Mater Chem B 7:7502-7514

  28. Abeywickrama CS, Wijesinghe KJ, Stahelin R V, Pang Y (2019) Lysosome imaging in cancer cells by pyrene-benzothiazolium dyes: An alternative imaging approach for LAMP-1 expression based visualization methods to avoid background interference. Bioorg Chem 91: 103144

  29. Dahal D, McDonald L, Bi X et al (2017) An NIR-emitting lysosome-targeting probe with large Stokes shift via coupling cyanine and excited-state intramolecular proton transfer. Chem Commun 53:3697–3700

    Article  CAS  Google Scholar 

  30. Johnson I, Spence MTZ, Eds. (2010) The Handbook: A Guide to Fluorescent Probes and Labeling Technologies, 11th ed.; Life Technologies Corporation

  31. Salvioli S, Ardizzoni A, Franceschi C, Cossarizza A (1997) JC-1, but not DiOC6 (3) or rhodamine 123, is a reliable fluorescent probe to assess ΔΨ changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett 411:77–82

    Article  CAS  Google Scholar 

  32. Dutta R, McDonough J, Yin X et al (2006) Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol 59:478–489

    Article  CAS  Google Scholar 

  33. Haugland RP (2005) The handbook: a guide to fluorescent probes and labeling technologies. Molecular probes, 10th ed., Invitrogen Corp.

  34. Zhou J, Shi W, Li L et al (2016) A Lysosome-Targeting Fluorescence Off-On Probe for Imaging of Nitroreductase and Hypoxia in Live Cells. Chem Asian J 11:2719–2724

    Article  CAS  Google Scholar 

  35. Gangopadhyay M, Mukhopadhyay SK, Gayathri S et al (2016) Fluorene–morpholine-based organic nanoparticles: lysosome-targeted pH-triggered two-photon photodynamic therapy with fluorescence switch on–off. J Mater Chem B 4:1862–1868

    Article  CAS  Google Scholar 

  36. Wu L, Li X, Ling Y et al (2017) Morpholine derivative-functionalized carbon dots-based fluorescent probe for highly selective lysosomal imaging in living cells. ACS Appl Mater Interfaces 9:28222–28232

    Article  CAS  Google Scholar 

  37. Shen S-L, Chen X-P, Zhang X-F et al (2015) A rhodamine B-based lysosomal pH probe. J Mater Chem B 3:919–925

    Article  CAS  Google Scholar 

  38. Chen Q, Fang H, Shao X et al (2020) A dual-labeling probe to track functional mitochondria–lysosome interactions in live cells. Nat Commun 11:1–10

    Google Scholar 

  39. Miyazaki J, Toumon Y (2019) Label-free dynamic imaging of mitochondria and lysosomes within living cells via simultaneous dual-pump photothermal microscopy. Biomed Opt Express 10:5852–5861

    Article  CAS  Google Scholar 

  40. Sánchez MI, Vida Y, Pérez-Inestrosa E et al (2020) MitoBlue as a tool to analyze the mitochondria-lysosome communication. Sci Rep 10:1–12

    Article  Google Scholar 

  41. Deus CM, Yambire KF, Oliveira PJ, Raimundo N (2020) Mitochondria–lysosome crosstalk: from physiology to neurodegeneration. Trends Mol Med 26:71–88

    Article  CAS  Google Scholar 

  42. Abeywickrama CS, Wijesinghe KJ, Stahelin RV, Pang Y (2017) Bright red-emitting pyrene derivatives with a large Stokes shift for nucleus staining. Chem Commun 53:5886–5889

    Article  CAS  Google Scholar 

Download references

Acknowledgements

YP thanks the Coleman endowment from the University of Akron. We thank Dr. Leah Shriver from University of Akron for the generous gift of MO3.13 cell line, Dr. Michael Konopka from University of Akron for assistance in bioimaging, and Nicolas Alexander for acquiring mass spectrometry data.

Author information

Authors and Affiliations

Authors

Contributions

C. S. A. planned, conducted, and summarized the synthesis and characterization of probes. C. S. A. and H.J.B. planned and performed cell imaging experiments. Y. P. supervised the project. C. S. A and Y. P. wrote the manuscript. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Yi Pang.

Ethics declarations

Conflict of Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 689 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abeywickrama, C.S., Baumann, H.J. & Pang, Y. Simultaneous Visualization of Mitochondria and Lysosome by a Single Cyanine Dye: The Impact of the Donor Group (-NR2) Towards Organelle Selectivity. J Fluoresc 31, 1227–1234 (2021). https://doi.org/10.1007/s10895-021-02786-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02786-1

Keywords

Navigation