Skip to main content
Log in

Rotational Dipole Plasmon Mode in Semiconductor Nanoparticles

  • ELECTRONIC PROPERTIES OF SOLID
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We analyze a new type of the plasmon mode in nanosize semiconductor crystals. Rotational dipole plasmon resonance, in which only angular degrees of freedom are excited, prevails in the optical spectra of photodoped nanocrystals. Such a collective mode differs basically from surface plasmon resonances in typical photoabsorption spectra of metallic nanoclusters and can be described as an excited state in a finite Fermi system as well as a rotational motion of a quantum liquid. We demonstrate that such dipole oscillations are harmonic, which makes it possible to identify them as a plasmon resonant excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009; Pan Stanford, Singapore, 2011).

  2. Quantum Plasmonics, Ed. by S. I. Bozhevolniy et al. (Springer Int., Switzeland, 2016).

  3. Plasmonics. From Basics to Advanced Topics, Ed. by S. Enoch and N. Bonod, vol. 167 of Springer Series in Optical Sciences (Springer, Berlin, 2012).

    Google Scholar 

  4. M. S. Tame, K. R. McEnery, S. K. Ozdemir, et al., Nat. Phys. 9, 329 (2013).

    Article  Google Scholar 

  5. J. A. Scholl, A. L. Koh, and J. A. Dionne, Nature (London, U.K.) 483, 421 (212).

  6. M. Brack, Rev. Mod. Phys. 65, 667 (1993).

    Article  ADS  Google Scholar 

  7. M. Harb, F. Rabilloud, D. Simon, et al., J. Chem. Phys. 129, 194108 (2008).

    Article  ADS  Google Scholar 

  8. F. Xuan and C. Guet, Phys. Rev. A 94, 043415 (2016).

    Article  ADS  Google Scholar 

  9. U. Kreibig and M. Vollmer, Optical Properties of Metallic Clusters, Vol. 65 of Springer Series in Materials Science (Springer, Berlin, 1995).

  10. Clusters of Atoms and Molecules, Ed. by H. Haberland, Vols. 52, 56 of Springer Series in Chemical Physics (Springer, Berlin, 1994), Vols. 1, 2.

  11. W. A. de Heer, Rev. Mod. Phys. 65, 611 (1993).

    Article  ADS  Google Scholar 

  12. C. R. C. Wang, S. Pollack, D. Cameron, and M. M. Kappes, J. Chem. Phys. 93, 3787 (1993).

    Article  Google Scholar 

  13. C. Guet and W. R. Johnson, Phys. Rev. B 45, 11283 (1992).

    Article  ADS  Google Scholar 

  14. U. Kreibig and P. Zacharias, Z. Phys. 231, 128 (1970).

    Article  ADS  Google Scholar 

  15. I. Kriegel, F. Scotognella, and L. Mannaa, Phys. Rep. 674, 1 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  16. Nanocrystal Quantum Dots, Ed. by V. I. Klimov (CRC, Boca Raton, FL, 2010).

    Google Scholar 

  17. R. C. Monreal, T. J. Antosiewicz, and S. P. Appel, New J. Phys. 15, 083044 (2013).

    Article  Google Scholar 

  18. B. Palpant, B. Prével, J. Lermé, et al., Phys. Rev. B 57, 1963 (1998).

    Article  ADS  Google Scholar 

  19. J. Lermé, B. Palpant, E. Cottancin, et al., Phys. Rev. Lett. 80, 5105 (1998).

    Article  ADS  Google Scholar 

  20. F. Scotognella, G. Della Valle, A. R. S. Kandada, et al., Eur. Phys. J. B 86, 154 (2013).

    Article  ADS  Google Scholar 

  21. Y. Xie, L. Carbone, C. Nobile, et al., ACS Nano 7, 7352 (2013).

    Article  Google Scholar 

  22. A. L. Routzahn, S. L. White, L.-K. Fong, et al., Israel. J. Chem. 52, 983 (2012).

    Article  Google Scholar 

  23. J. M. Luther, P. K. Jain, T. Ewers, et al., Nat. Mater. 10, 361 (2011).

    Article  ADS  Google Scholar 

  24. A. MSchimpf, N. Thakkar, C. E. Gunthardt, et al., ACS Nano 8, 1065 (2014).

    Article  Google Scholar 

  25. H. Zhang, V. Kulkarni, E. Prodan, et al., J. Phys. Chem. C 118, 16035 (2014).

    Article  Google Scholar 

  26. E. Townsend and G. W. Bryant, Nano Lett. 12, 429 (2012).

    Article  ADS  Google Scholar 

  27. E. Prodan, P. Nordlander, and N. J. Halas, Nano Lett. 3, 1411 (2003).

    Article  ADS  Google Scholar 

  28. S. Link and M. A. El-Sayed, J. Phys. Chem. B 103, 4212 (1999).

    Article  Google Scholar 

  29. J. A. Faucheaux, A. L. D. Stanton, and P. K. Jain, J. Phys. Chem. Lett. 5, 976 (2014).

    Article  Google Scholar 

  30. S. D. Lounis, E. L. Runnerstrom, A. Bergerud, et al., J. Am. Chem. Soc. 136, 7110 (2014).

    Article  Google Scholar 

  31. M. A. El-Sayed, Acc. Chem. Res. 37, 326 (2004).

    Article  Google Scholar 

  32. S.-W. Hsu, K. On, and A. T. Rao, J. Am. Chem. Soc. 133, 19072 (2011).

    Article  Google Scholar 

  33. X. Liu and M. T. Swihart, Chem. Soc. Rev. 43, 3908 (2014).

    Article  Google Scholar 

  34. G. Garcia, R. Buonsanti, E. L. Runnerstrom, et al., Nano Lett. 11, 4415 (2011).

    Article  ADS  Google Scholar 

  35. M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, J. Am. Chem. Soc. 131, 17736 (2009).

    Article  Google Scholar 

  36. D. J. Rowe, J. S. Jeong, K. A. Mkhoyan, and U. R. Kortshage, Nano Lett. 13, 1317 (2013).

    Article  ADS  Google Scholar 

  37. Zh. Sun and B. Zhao, Appl. Phys. Lett. 91, 221106 (2007).

    Article  ADS  Google Scholar 

  38. G. Mie, Ann. Phys. 25, 377 (1908).

    Article  Google Scholar 

  39. H. Liu, C. K. Brozek, S. Sun, et al., J. Phys. Chem. C 121, 26066 (2017).

    Google Scholar 

  40. A. M. Schimpf, C. E. Gunthardt, J. DRinehart, et al., J. Am. Chem. Soc. 135, 16569 (2013).

    Article  Google Scholar 

  41. W. Ekardt, Phys. Rev. B 31, 6360 (1985).

    Article  ADS  Google Scholar 

  42. D. E. Beck, Phys. Rev. B 35, 7325 (1987).

    Article  ADS  Google Scholar 

  43. L. G. Gerchikov, C. Guet, and A. N. Ipatov, Phys. Rev. A 66, 053202 (2002).

    Article  ADS  Google Scholar 

  44. A. N. Ipatov, L. G. Gerchikov, and C. Guet, J. Comput. Mater. Sci. 35, 347 (2006).

    Article  Google Scholar 

  45. U. Banin, Y. Cao, D. Katz, and O. Millo, Nature (London, U.K.) 400, 542 (1999).

    Article  ADS  Google Scholar 

  46. L. P. Kouwenhoven, D. G. Austing, and S. Tarucha, Rep. Prog. Phys. 64, 701 (2001).

    Article  ADS  Google Scholar 

  47. A. N. Ipatov, L. G. Gerchikov, and C. Guet, Nanoscale Res. Lett. 13, 297 (2018).

    Article  ADS  Google Scholar 

  48. K. Yabana and G. F. Bertsch, Phys. Scr. 48, 633 (1993).

    Article  ADS  Google Scholar 

  49. N. Ju, A. Bulgac, and J. W. Keller, Phys. Rev. B 48, 9071 (1993).

    Article  ADS  Google Scholar 

  50. P. Östling, P. Apell, and A. Rosen, Europhys. Lett. 21, 539 (1993).

    Article  ADS  Google Scholar 

  51. M. Madjet, G. Guet, and W. R. Johnson, Phys. Rev. A 51, 1327 (1995).

    Article  ADS  Google Scholar 

  52. Applied Many-Body Methods in Spectroscopy and Electronic Structure, Ed. by D. Mikharjee (Springer Science, New York, 1992).

    Google Scholar 

  53. H. E. Wilhelm, Phys. Rev. D 1, 2278 (1970).

    Article  ADS  Google Scholar 

  54. G. Guiliani and G. Vignale, Quantum Theory of Electron Liquid (Cambridge Univ. Press, Cambridge, 2005).

    Book  Google Scholar 

  55. T. Ihn, Semiconductor Nanostructures: Quantum States and Electronic Transport (Oxford Univ. Press, Oxford, 2010).

    Google Scholar 

  56. F. Rossi, Theory of Semiconductor Quantum Devices: Microscopic Modeling and Simulation Strategies (Springer Science, New York, 2011).

    Book  MATH  Google Scholar 

  57. H. Morko and Ü. Özgür, in Zinc Oxide (Wiley-VCH, Weinheim, 2009).

  58. Ll. Serra, F. Garcias, J. Navarro, et al., Phys. Rev. B 46, 9369 (1992).

    Article  ADS  Google Scholar 

  59. D. A. Varshalovich, A. N. Moscalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988).

    Book  Google Scholar 

  60. R. Dreizler and E. Gross, Density Functional Theory (Plenum, New York, 1995).

    Google Scholar 

  61. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1989; Pergamon, New York, 1977,).

  62. L. D. Landau, Sov. Phys. JETP 3, 920 (1957).

    Google Scholar 

  63. D. P. Grimmer, Phys. B+C (Amsterdam, Neth.) 106, 9 (1981).

  64. J. Feldman, H. Knörrer, and E. Trubowitz, Commun. Math. Phys. 247, 1 (2004).

    Article  ADS  Google Scholar 

  65. B. Fröhlich, M. Feld, E. Vogt, et al., Phys. Rev. Lett. 109, 130403 (2012).

    Article  ADS  Google Scholar 

  66. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Interscience, New York, 1983).

    Google Scholar 

  67. F. Alpeggiani, S. D’Agostino, and L. C. Andreani, Phys. Rev. B 86, 035421 (2012).

    Article  ADS  Google Scholar 

  68. Quantum Confinement Effects, Observations and Insights, Ed. by R. Parker (Nova Science, New York, 2017).

    Google Scholar 

  69. B. Zorman, M. V. Ramakrishna, and R. A. Freisner, J. Phys. Chem. 99, 7649 (1995).

    Article  Google Scholar 

  70. S. Neeleshwar, C. L. Chen, C. B. Tsai, et al., Phys. Rev. B 71, 201307 (2005).

    Article  ADS  Google Scholar 

  71. A. Dalgarno and G. A. Victor, Proc. R. Soc. A 291, 291 (1966).

    ADS  Google Scholar 

  72. D. J. Rowe, Rev. Mod. Phys. 40, 153 (1968).

    Article  ADS  Google Scholar 

  73. G. F. Bertsch and R. A. Brorlia, Oscillations in Finite Quantum Systems (Cambridge Univ. Press, UK, 1994).

    Google Scholar 

  74. M. Ya. Amusia and L. V. Chernysheva, Computation of Atomic Processes (IOP, Bristol, 1997).

    Book  Google Scholar 

  75. C. de Boor, A Practical Guide to Splines (Springer, New York, 1978).

    Book  MATH  Google Scholar 

  76. J. Sapirstein and W. R. Johnson, J. Phys. B: At., Mol. Opt. Phys. 29, 5213 (1996).

    Article  ADS  Google Scholar 

  77. W. E. Ormand, J. M. Pacheco, S. Sanguinetti, et al., Z. Phys. D 24, 401 (1992).

    Article  ADS  Google Scholar 

  78. G. F. Bertsch and D. Tomanek, Phys. Rev. B 40, 2749 (1989).

    Article  ADS  Google Scholar 

  79. J. M. Pacheco and R. A. Broglia, Phys. Rev. Lett. 62, 400 (1989).

    Article  ADS  Google Scholar 

  80. J. M. Pacheco and W. D. Schöne, Phys. Rev. Lett. 79, 4986 (1997).

    Article  ADS  Google Scholar 

  81. F. Della Salla, R. Rousseau, A. Görling, and D. Marx, Phys. Rev. Lett. 92, 183401 (2004).

    Article  ADS  Google Scholar 

  82. C. Yannouleas and R. A. Broglia, Ann. Phys. (N.Y.) 217, 105 (1991).

    Article  ADS  Google Scholar 

  83. B. Tanatar and D. Ceperley, Phys. Rev. B 39, 5005 (1989).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Prof. Claude Guet from the Nanyang Technological University for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. G. Gerchikov or A. N. Ipatov.

Additional information

Translated by N. Wadhwa

APPENDIX

APPENDIX

The collective excited state |Φν〉 in the RPAX (29) is characterized by certain values of total angular momentum L and its projection M. This is ensured by the dependence of amplitudes X and Y on the angular momentum projections in terms of the Clebsch–Gordan coefficient

$$\begin{gathered} {{X}_{{{{n}_{p}}{{l}_{p}}{{m}_{p}}{{\sigma }_{p}},{{n}_{h}}{{l}_{h}}{{m}_{h}}{{\sigma }_{p}}}}} = {{( - 1)}^{{{{m}_{h}}}}}C_{{{{l}_{p}}{{m}_{p}},{{l}_{h}}M - {{m}_{h}}}}^{{LM}}\frac{{{{\delta }_{{{{\sigma }_{p}}{{\sigma }_{h}}}}}}}{{\sqrt 2 }}{{X}_{{{{n}_{p}}{{l}_{p}},{{n}_{h}}{{l}_{h}}}}}, \\ {{Y}_{{{{n}_{p}}{{l}_{p}}{{m}_{p}}{{\sigma }_{p}}{{n}_{h}}{{l}_{h}}{{m}_{h}}{{\sigma }_{p}}}}} = {{( - 1)}^{{{{m}_{p}}}}}C_{{{{l}_{p}}M - {{m}_{p}}{{l}_{h}}{{m}_{h}}}}^{{LM}}\frac{{{{\delta }_{{{{\sigma }_{p}}{{\sigma }_{h}}}}}}}{{\sqrt 2 }}{{Y}_{{{{n}_{p}}{{l}_{p}},{{n}_{h}}{{l}_{h}}}}}. \\ \end{gathered} $$
(45)

In the case of dipole excitations considered here, L = |lplh| = 1, and the dependence of the reduced parts of amplitudes \({{X}_{{{{n}_{p}}{{l}_{p}},{{n}_{h}}{{l}_{h}}}}}\) and \({{Y}_{{{{n}_{p}}{{l}_{p}},{{n}_{h}}{{l}_{h}}}}}\) on radial quantum numbers np,h and orbital angular momenta lp,h of single-particle states is determined from the numerical solution of matrix equation (30).

In the two-level 2 × 2 RPAX model, in superposition (29), we take into account only one HOMO–LUMO transition, for which

$${{n}_{p}} = {{n}_{h}} = 1,\quad {{l}_{p}} - 1 = {{l}_{h}} = {{l}_{{\max }}}.$$

Consequently, only one pair of reduced amplitudes X and Y satisfying Eqs. (35) is left, and their values are written in explicit form as relation (37). Coulomb matrix element V in Eqs. (35), (36) can be written in form

$$\begin{gathered} V = \sum\limits_{{{m}_{h}}{{m}_{p}}m_{h}^{'}m_{p}^{'}}^{} {{{{( - 1)}}^{{{{m}_{h}} + m_{h}^{'}}}}C_{{{{l}_{h}} - {{m}_{h}}\,{{l}_{p}}{{m}_{p}}}}^{{10}}} C_{{{{l}_{h}} - m_{h}^{'}\,{{l}_{p}}m_{p}^{'}}}^{{10}} \\ \times \,\int {\psi _{{{{l}_{h}}{{m}_{h}}}}^{*}({\mathbf{r}}){{\psi }_{{{{l}_{p}}{{m}_{p}}}}}({\mathbf{r}}){v}({\mathbf{r}},{\mathbf{r}}{\kern 1pt} ')\psi _{{{{l}_{p}}m_{p}^{'}}}^{*}({\mathbf{r}}{\kern 1pt} '){{\psi }_{{{{l}_{h}}m_{h}^{'}}}}({\mathbf{r}}{\kern 1pt} ')d{\mathbf{r}}d{\mathbf{r}}{\kern 1pt} ',} \\ \end{gathered} $$
(46)

where the result of summation over spin indices has already been included in the form of factor 2. Single-particle wavefunctions are defined as product (7), and we disregard the dependence of their radial components on the angular momentum

$${{P}_{{1,{{l}_{{\max }}}}}}(r) = {{P}_{{1,{{l}_{{\max }}} + 1}}}(r) = {{P}_{1}}(r).$$

Operator \({v}\)(r, r') of the Coulomb interaction between particles is represented as the sum of “direct” and exchange components (19), which makes it possible to calculate the corresponding terms separately, V = Vd + Vx.

The “direct” part of operator V(r, r') is determined from the multipole expansion in spherical harmonics (2). After integration with respect to angular variables [59],

$$\begin{gathered} \langle {{Y}_{{{{l}_{p}}{{m}_{p}}}}}({\mathbf{n}}){\text{|}}{{Y}_{{lm}}}({\mathbf{n}}){\text{|}}{{Y}_{{{{l}_{h}}\,{{m}_{h}}}}}({\mathbf{n}})\rangle \\ = {{( - 1)}^{{ - {{m}_{h}}}}}\sqrt {\frac{{(2{{l}_{h}} + 1)(2{{l}_{p}} + 1)}}{{4\pi (2l + 1)}}} C_{{{{l}_{h}} - {{m}_{h}}\,{{l}_{p}}{{m}_{p}}}}^{{lm}}C_{{{{l}_{h}}\,0{{l}_{p}}0}}^{{l0}}, \\ \end{gathered} $$
(47)
$$C_{{{{l}_{h}}0{{l}_{p}}0}}^{{10}} = {{( - 1)}^{{{{l}_{h}}}}}\sqrt {\frac{{3({{l}_{h}} + 1)}}{{(2{{l}_{h}} + 1)(2{{l}_{p}} + 1)}}} ,$$
(48)

and subsequent summation over mp, h, we obtain

$$\begin{gathered} {{V}_{d}} = \frac{{2{{e}^{2}}({{l}_{{\max }}} + 1)}}{3}\int {{{P}_{1}}{{{(r)}}^{2}}{{P}_{1}}{{{(r{\kern 1pt} ')}}^{2}}} \\ \times \left( {\frac{{r_{ < }^{l}}}{{{{\varepsilon }_{1}}r_{ > }^{{l + 1}}}} + \frac{{({{\varepsilon }_{1}} - {{\varepsilon }_{2}})(l + 1){{{({{r}_{1}}{{r}_{2}})}}^{l}}}}{{{{\varepsilon }_{1}}(l{{\varepsilon }_{1}} + (l + 1){{\varepsilon }_{2}}){{R}^{{2l + 1}}}}}} \right)drdr{\kern 1pt} '. \\ \end{gathered} $$
(49)

The corresponding contribution 2ΔVd/\({{\hbar }^{2}}\) to Ω2 on the right-hand side of Eq. (36) with account for relations (14), (25), (22), and (20) exactly coincides with term KC/M in formula (24) for \(\omega _{p}^{2}\) in the hydrodynamic model.

Analogously, the exchange part of the matrix element can be written in form

$$\begin{gathered} {{V}_{x}} = - 2{{\left( {\frac{1}{{9\pi }}} \right)}^{{1/3}}}\frac{{{{e}^{2}}}}{{{{\varepsilon }_{1}}}}\sum\limits_{{{m}_{h}}{{m}_{p}}m_{h}^{'}m_{p}^{'}}^{} {C_{{{{l}_{h}} - {{m}_{h}},{{l}_{p}}{{m}_{p}}}}^{{10}}} C_{{{{l}_{h}} - m_{h}^{'},{{l}_{p}}m_{p}^{'}}}^{{10}}{{( - 1)}^{{{{m}_{h}} + m_{h}^{'}}}} \\ \times \int {\frac{{\psi _{{{{l}_{h}}{{m}_{h}}}}^{*}({\mathbf{r}}){{\psi }_{{{{l}_{p}}{{m}_{p}}}}}({\mathbf{r}})\psi _{{{{l}_{p}}m_{p}^{'}}}^{*}({\mathbf{r}}){{\psi }_{{{{l}_{h}}m_{h}^{'}}}}({\mathbf{r}})}}{{{{\rho }_{0}}{{{(r)}}^{{2/3}}}}}} d{\mathbf{r}}, \\ \end{gathered} $$
(50)

where factor 2 appears again as a result of summation over the spin indices. The sum of the product of two spherical harmonics in \(\psi _{{{{l}_{h}}{{m}_{h}}}}^{*}\)(r)\({{\psi }_{{{{l}_{p}}{{m}_{p}}}}}\)(r) and the Clebsch–Gordan coefficient can be transformed to [59]

$$\begin{gathered} \sum\limits_{{{m}_{h}},{{m}_{p}}}^{} {C_{{{{l}_{h}} - {{m}_{h}},{{l}_{p}}{{m}_{p}}}}^{{10}}} {{( - 1)}^{{{{m}_{h}}}}}{{Y}_{{{{l}_{p}},{{m}_{p}}}}}({\mathbf{n}})Y_{{{{l}_{h}}, - {{m}_{h}}}}^{*}({\mathbf{n}}) \\ = \sqrt {\frac{{(2{{l}_{p}} + 1)(2{{l}_{h}} + 1)}}{{12\pi }}} C_{{{{l}_{h}}0,{{l}_{p}}p}}^{{10}}{{Y}_{{1,0}}}({\mathbf{n}}). \\ \end{gathered} $$
(51)

After the calculation of the angular part, expression (50) becomes

$${{V}_{x}} = - {{\left( {\frac{1}{{9\pi }}} \right)}^{{1/3}}}\frac{{{{e}^{2}}}}{{{{\varepsilon }_{1}}}}\frac{{2({{l}_{{\min }}} + 1)}}{{4\pi }}\int\limits_0^\infty {\frac{{P_{1}^{4}(r)}}{{{{r}^{2}}{{\rho }_{0}}{{{(r)}}^{{2/3}}}}}dr.} $$
(52)

Therefore, with account for relations (14), (25), (22), and (20), exchange contribution 2ΔVx/\({{\hbar }^{2}}\) to Ω2 exactly coincides with exchange term Kx/M in relation (24).

Expressions (45) for RPAX amplitudes were also used in the calculation of transition density \(\rho _{{{\text{tr}}}}^{{(\nu )}}\)(r) = 〈Φν|δρ(r)|Φ0〉. After the summation over spin indices, formula (41) is transformed to

$$\begin{gathered} \rho _{{{\text{tr}}}}^{{(\nu )}}({\mathbf{r}}) = \sqrt 2 \sum\limits_{{{n}_{p}},{{l}_{p}},{{m}_{p}},{{n}_{h}},{{l}_{h}},{{m}_{h}}}^{} {{{{( - 1)}}^{{{{m}_{h}}}}}} \\ \, \times (X_{{{{n}_{p}}{{l}_{p}},{{n}_{h}}{{l}_{h}}}}^{\nu }C_{{{{l}_{p}}{{m}_{p}},{{l}_{h}} - {{m}_{h}}}}^{{10}}{{\psi }_{{{{l}_{h}}{{m}_{h}}}}}({\mathbf{r}})\psi _{{{{l}_{p}}{{m}_{p}}}}^{*}({\mathbf{r}}) \\ \, + Y_{{{{n}_{p}}{{l}_{p}},{{n}_{h}}{{l}_{h}}}}^{\nu }C_{{{{l}_{p}} - {{m}_{p}}\,{{l}_{h}}{{m}_{h}}}}^{{10}}\psi _{{{{l}_{h}}{{m}_{h}}}}^{*}({\mathbf{r}}){{\psi }_{{{{l}_{p}}{{m}_{p}}}}}({\mathbf{r}})). \\ \end{gathered} $$
(53)

The summation over mp and mh is performed using expression (51) and leads to final result

$$\begin{gathered} \rho _{{{\text{tr}}}}^{{(\nu )}}({\mathbf{r}}) = \frac{1}{{\sqrt {6\pi } {{r}^{2}}}}\sum\limits_{{{n}_{p}},{{l}_{p}},{{n}_{h}},{{l}_{h}}}^{} {{{P}_{{{{n}_{p}}{{l}_{p}}}}}(r){{P}_{{{{n}_{h}}{{l}_{h}}}}}(r)} \\ \, \times (X_{{{{n}_{p}}{{l}_{p}},{{n}_{h}}{{l}_{h}}}}^{\nu } + Y_{{{{n}_{p}}{{l}_{p}},{{n}_{h}}{{l}_{h}}}}^{\nu })\sqrt {(2{{l}_{h}} + 1)(2{{l}_{p}} + 1)} \\ \, \times C_{{{{l}_{h}}0{{l}_{p}}0}}^{{l0}}{{Y}_{{l0}}}({\mathbf{n}}), \\ \end{gathered} $$
(54)

which with account for relation (48), gives exactly expressions (42) and (43).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerchikov, L.G., Ipatov, A.N. Rotational Dipole Plasmon Mode in Semiconductor Nanoparticles. J. Exp. Theor. Phys. 132, 922–940 (2021). https://doi.org/10.1134/S1063776121050022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121050022

Navigation