Skip to main content
Log in

Hydromagnetic Instabilities in a Nonuniformly Rotating Layer of an Electrically Conducting Nanofluid

  • STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The stability of magnetized flows of a nonuniformly rotating layer of an electrically conducting nanofluid is investigated with regard to the effects of Brownian diffusion and thermophoresis. In the absence of a temperature gradient, new types of magnetorotational instability (MRI) are considered in axial, azimuthal, and helical magnetic fields in thin layers of a nanofluid. The increments and development regions of these instabilities are obtained depending on the angular velocity profile (Rossby number Ro) and the radial wavenumber k. In the presence of temperature and nanoparticle concentration gradients, stationary regimes of nonuniformly rotating convection in axial and helical magnetic fields are studied. Expressions are obtained for the critical Rayleigh numbers Rast, and neutral stability curves are plotted depending on the angular velocity profile, the profile of the external azimuthal magnetic field (the magnetic Rossby number Rb), and the radial wavenumber k. Conditions for stabilization and destabilization of stationary convection in axial and helical magnetic fields are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. S. K. Das, S. U. S. Choi, W. Yu, and T. Pradeep, Nanofluids: Science and Technology (Wiley–Interscience, Hoboken, NJ, 2008).

    Google Scholar 

  2. V. Ya. Rudyak and A. V. Minakov, Modern Problems of Micro- and Nanofluidics (Nauka, Novosibirsk, 2016) [in Russian].

    Google Scholar 

  3. J. Buongiorno, J. Heat Transf. 128, 240 (2006).

    Article  Google Scholar 

  4. V. Ya. Rudyak, A. V. Minakov, and M. I. Pryazhnikov, Tech. Phys. Lett. 45, 457 (2019).

    Article  ADS  Google Scholar 

  5. B. Ghasemi and S. M. Aminossadati, Int. J. Therm. Sci. 50, 1748 (2011).

    Article  Google Scholar 

  6. M. A. A. Hamada, I. Pop, and A. I. Md. Ismail, Nonlin. Anal. Real World Appl. 12, 1338 (2011).

    Article  Google Scholar 

  7. D. Yadav, R. Bhargava, and G. S. Agrawal, J. Eng. Math. 80, 147 (2013).

    Article  Google Scholar 

  8. S. Chandrasekhar, Hydrodynamics and Hydromagnetic Stability (Oxford Univ. Press, London, 1961).

    MATH  Google Scholar 

  9. G. Z. Gershuni and E. M. Zhukhovitskii, Convective Stability of an Incompressible Fluid (Nauka, Moscow, 1972; Israel Program Sci. Transl., Jerusalem, 1976).

  10. A. V. Getling, Rayleigh-Benard Convection: Structures and Dynamics, Advanced Series in Nonlinear Dynamics (Editorial URSS, Moscow, 1999; World Scientific, Singapore, 1998).

  11. Dh. Yadav, R. Bhargava, G. S. Agrawal, G. S. Hwang, J. Lee, and M. C. Kim, Asia-Pacif. J. Chem. Eng. 9, 663 (2014).

    Google Scholar 

  12. M. I. Kopp, A. V. Tur, and V. V. Yanovsky, J. Exp. Theor. Phys. 127, 1010 (2018).

    Article  Google Scholar 

  13. M. Kopp, A. Tur, and V. Yanovsky, East Eur. J. Phys. 1, 4 (2019).

    Google Scholar 

  14. M. I. Kopp, A. V. Tur, and V. V. Yanovski, J. Exp. Theor. Phys. 130, 759 (2020).

    Article  ADS  Google Scholar 

  15. M. I. Kopp, A. V. Tur, and V. V. Yanovsky, Fluid Dyn. Res. 53, 015509 (2021).

    Article  ADS  Google Scholar 

  16. V. P. Lakhin and V. I. Ilgisonis, J. Exp. Theor. Phys. 110, 689 (2010).

    Article  ADS  Google Scholar 

  17. O. N. Kirillov and F. Stefani, Proc. Int. Astron. Union 8, 233 (2012).

    Article  Google Scholar 

  18. O. N. Kirillov, F. Stefani, and Y. Fukumoto, J. Fluid Mech. 760, 591 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  19. S. Chandrasekhar, Proc. Natl. Acad. Sci. U. S. A. 42, 273 (1956).

    Article  ADS  MathSciNet  Google Scholar 

  20. E. P. Velikhov, Sov. Phys. JETP 9, 995 (1959).

    MathSciNet  Google Scholar 

  21. A. B. Mikhailovskii, J. G. Lominadze, A. P. Churikov, and V. D. Pustovitov, Plasma Phys. Rep. 35, 273 (2009).

    Article  ADS  Google Scholar 

  22. H. Ji, J. Goodman and A. Kageyama, Mon. Not. R. Astron. Soc. 325, L1 (2001).

    Article  ADS  Google Scholar 

  23. K. Noguchi, V. I. Pariev, S. A. Colgate, H. F. Beckley, and J. Nordhaus, Astrophys. J. 575, 1151 (2002).

    Article  ADS  Google Scholar 

  24. G. Rüdiger and Y. Zhang, Astron. Astrophys. 378, 302 (2001).

    Article  ADS  Google Scholar 

  25. J. Goodman and H. Ji, J. Fluid Mech. 462, 365 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  26. A. P. Willis and C. F. Barenghi, Astron. Astrophys. 388, 688 (2002).

    Article  ADS  Google Scholar 

  27. G. Rüdiger, M. Schultz, and D. Shalybkov, Phys. Rev. E 67, 046312 (2003).

    Article  ADS  Google Scholar 

  28. E. P. Velikhov, A. A. Ivanov, V. P. Lakhin, and K. S. Serebrennikov, Phys. Lett. A 356, 357 (2006).

    Article  ADS  Google Scholar 

  29. V. I. Ilgisonis, I. V. Khalzov, V. P. Lakhin, and A. I. Smolyakov, AIP Conf. Proc. 1242, 23 (2010).

    Article  ADS  Google Scholar 

  30. R. Hollerbach and G. Rüdiger, Phys. Rev. Lett. 95, 124501 (2005).

    Article  ADS  Google Scholar 

  31. G. Rüdiger, R. Hollerbach, M. Schultz, and D. A. Shalybkov, Astron. Nachr. 326, 409 (2005).

    Article  ADS  Google Scholar 

  32. V. P. Lakhin and E. R. Velikhov, Phys. Lett. A 369, 98 (2007).

    Article  ADS  Google Scholar 

  33. H. Ji and S. Balbus, Phys. Today 66 (8), 27 (2013).

    Article  Google Scholar 

  34. S. Boldyrev, D. Huynh, and V. Pariev, Phys. Rev. E 80, 066310 (2009).

    Article  ADS  Google Scholar 

  35. G. I. Ogilvie and J. E. Pringle, Mon. Not. R. Astron. Soc. 279, 152 (1996).

    Article  ADS  Google Scholar 

  36. G. I. Ogilvie and A. T. Potter, Phys. Rev. Lett. 100, 074503 (2008).

    Article  ADS  Google Scholar 

  37. H. Moffat, Magnetic Field Generation in Electrically Conducting Fluids (Cambridge Univ. Press, London, 1978).

    Google Scholar 

  38. F. R. Gantmakher, Lectures on Analytical Mechanics (Fizmatlit, Moscow, 2005; Mir, Moscow, 1970).

  39. D. H. Michael, Mathematika 1, 45 (1954).

    Article  MathSciNet  Google Scholar 

  40. B. Eckhardt and D. Yao, Chaos Solitons Fractals 5, 2073 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  41. G. Rüdiger and M. Schultz, Astron. Nachr. 331, 121 (2010).

    Article  ADS  Google Scholar 

  42. D. A. Nield and A. V. Kuznetsov, Eur. J. Mech. B 29, 217 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. I. Kopp, A. V. Tur or V. V. Yanovsky.

Additional information

Translated by I. Nikitin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopp, M.I., Tur, A.V. & Yanovsky, V.V. Hydromagnetic Instabilities in a Nonuniformly Rotating Layer of an Electrically Conducting Nanofluid. J. Exp. Theor. Phys. 132, 960–984 (2021). https://doi.org/10.1134/S1063776121050113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121050113

Navigation