Skip to main content
Log in

CD14 Involvement in Third-degree Skin Burn-induced Myocardial Injury via the MAPK Signaling Pathway

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

This study investigated the potential genes and related pathways in burn-induced myocardial injury. Rat myocardial injury induced by third-degree burn and the histopathological structures, apoptosis, and cardiac injury markers were then identified using hematoxylin & eosin staining, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining, and enzyme-linked immunosorbent assay. Next, differentially expressed mRNAs were screened through next-generation sequencing (NGS), followed by functional annotation and key gene validation through quantitative reverse transcription-polymerase chain reaction. Subsequently, CD14 was screened out, and small interfering RNAs against CD14 were transfected to H9C2 cells to further verify the role of CD14 in burn-induced injury. The results showed that third-degree burn could markedly damage the structure of myocardial tissue, induce the apoptosis of myocardial cells, and increase the levels of myocardial injury-related markers, suggesting that burns could induce myocardial injury in rats. Besides, NGS data discovered that third-degree burn could result in 416 differentially upregulated mRNAs and 285 differentially downregulated mRNAs in myocardial tissue. It was also disclosed that differentially expressed mRNAs were mainly enriched in the phosphatidylinositol 3-kinase/Akt, mitogen-activated protein kinase (MAPK), and tumor necrosis factor signaling pathways. Furthermore, cell viability was significantly decreased in H9C2 cells treated with 10% rat burn serum. CD14 was significantly differentially expressed and screened out for further studies. Treatment with burn serum can significantly upregulate the phosphorylation level of extracellular signal-regulated kinase, p38, and c-Jun N-terminal kinase and the expression of cleaved caspase-3 and downregulate the expression of Bcl2 when compared with those in negative control of small interfering RNA transfected H9C2 cells, whereas interfering with CD14 expression reversed the effects of burn serum. The study demonstrated that burn serum treatment could activate the MAPK signaling pathway to promote cell apoptosis, and it can be reversed by interfering with the expression of CD14.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Magne, J. (2002). [Psychological aspects of burns]. Pathologie Biologie (Paris), 50, 134–136.

    Article  CAS  Google Scholar 

  2. Huang, Y., Li, Z., & Yang, Z. (2003). Roles of ischemia and hypoxia and the molecular pathogenesis of post-burn cardiac shock. Burns, 29, 828–33.

    Article  PubMed  Google Scholar 

  3. Weitgasser, L., Ihra, G., Schäfer, B., Markstaller, K., & Radtke, C. (2021). Update on hyperbaric oxygen therapy in burn treatment. Wiener Klinische Wochenschrift, 133, 137–143.

    Article  PubMed  Google Scholar 

  4. Clemmensen, T. S., Soerensen, J., Hansson, N. H., Tolbod, L. P., Harms, H. J., & Eiskjær, H., et al. (2018). Myocardial oxygen consumption and efficiency in patients with cardiac amyloidosis. Journal of the American Heart Association, 7, e009974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. He, W., Wang, Y., Wang, P., & Wang, F. (2019). Intestinal barrier dysfunction in severe burn injury. Burns & Trauma, 7, 24.

    Article  Google Scholar 

  6. Xiao, R., Teng, M., Zhang, Q., Shi, X. H., & Huang, Y. S. (2012). Myocardial autophagy after severe burn in rats. PLoS ONE, 7, e39488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kramer, G.C., Lund, T., & Beckum, O.K. (2007). Pathophysiology of burn shock and burn edema. In: Herndon DN (Ed) Total Burn Care (Third Edition), Elsevier Inc. 93–106.

  8. Tewelde, S. Z., Liu, S. S., & Winters, M. E. (2018). Cardiogenic shock. Cardiolology Clinics, 36, 53–61.

    Article  Google Scholar 

  9. Plassais, J., Venet, F., Cazalis, M. A., Le Quang, D., Pachot, A., & Monneret, G., et al. (2017). Transcriptome modulation by hydrocortisone in severe burn shock: ancillary analysis of a prospective randomized trial. Critical Care, 21, 158.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Reyentovich, A., Barghash, M. H., & Hochman, J. S. (2016). Management of refractory cardiogenic shock. Nature Reviews Cardiology, 13, 481–92.

    Article  PubMed  Google Scholar 

  11. Lim, H. S. (2016). Cardiogenic shock: failure of oxygen delivery and oxygen utilization. Clinical Cardiology, 39, 477–83.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Levy, S. E., & Myers, R. M. (2016). Advancements in next-generation sequencing. Annual Review of Genomics and Humun Genetics, 17, 95–115.

    Article  CAS  Google Scholar 

  13. Slatko, B. E., Gardner, A. F., & Ausubel, F. M. (2018). Overview of next-generation sequencing technologies. Current Protocol in Molecular Biology, 122, e59.

    Google Scholar 

  14. de Klerk, E., & t Hoen, P. A. (2015). Alternative mRNA transcription, processing, and translation: insights from RNA sequencing. Trends in Genetics, 31, 128–39.

    Article  PubMed  Google Scholar 

  15. Martin, D.P., Miya, J., Reeser, J.W., & Roychowdhury, S. (2016). Targeted RNA sequencing assay to characterize gene expression and genomic alterations. Journal of Visualized Experience, 4, 54090.

  16. Byron, S. A., Van Keuren-Jensen, K. R., Engelthaler, D. M., Carpten, J. D., & Craig, D. W. (2016). Translating RNA sequencing into clinical diagnostics: opportunities and challenges. Nature Reviews Genetics, 17, 257–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Potter, S. S. (2018). Single-cell RNA sequencing for the study of development, physiology and disease. Nature Reviews Nephrology, 14, 479–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gao, R., Kim, C., Sei, E., Foukakis, T., Crosetto, N., & Chan, L. K., et al. (2017). Nanogrid single-nucleus RNA sequencing reveals phenotypic diversity in breast cancer. Nature Communications, 8, 228.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wang, J., Dean, D. C., Hornicek, F. J., Shi, H., & Duan, Z. (2019). RNA sequencing (RNA-Seq) and its application in ovarian cancer. Gynecologic Oncology, 152, 194–201.

    Article  CAS  PubMed  Google Scholar 

  20. Ackers-Johnson, M., Tan, W. L. W., & Foo, R. S. (2018). Following hearts, one cell at a time: recent applications of single-cell RNA sequencing to the understanding of heart disease. Nature Communications, 9, 4434.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Du, M., Dong, R., & Zheng, S. (2019). Single-cell RNA sequencing of T cells in crohn’s disease. Gastroenterology, 157, 265–6.

    Article  PubMed  Google Scholar 

  22. Giannopoulou, E. G., Elemento, O., & Ivashkiv, L. B. (2015). Use of RNA sequencing to evaluate rheumatic disease patients. Arthritis Research & Therapy, 17, 167.

    Article  Google Scholar 

  23. Kalayinia, S., Goodarzynejad, H., Maleki, M., & Mahdieh, N. (2018). Next generation sequencing applications for cardiovascular disease. Annals of Medicine, 50, 91–109.

    Article  CAS  PubMed  Google Scholar 

  24. Abdullahi, A., Amini-Nik, S., & Jeschke, M. G. (2014). Animal models in burn research. Cellular and Molecular Life Sciences, 71, 3241–55.

    Article  CAS  PubMed  Google Scholar 

  25. Shen, S., Kong, J., Qiu, Y., Yang, X., Wang, W., & Yan, L. (2019). Identification of core genes and outcomes in hepatocellular carcinoma by bioinformatics analysis. Journal of Cellular Biochemistry, 120, 10069–81.

    Article  CAS  PubMed  Google Scholar 

  26. Klopfenstein, D. V., et al. (2018). GOATOOLS: A Python library for Gene Ontology analyses. Scientific Reports, 8, 10872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y., & Hattori, M. (2004). The KEGG resource for deciphering the genome. Nucleic Acids Research, 32, D277–280. Database issue.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cao, W., Xie, Y. H., Li, X. Q., Zhang, X. K., Chen, Y. T., & Kang, R., et al. (2011). Burn-induced apoptosis of cardiomyocytes is survivin dependent and regulated by PI3K/Akt, p38 MAPK and ERK pathways. Basic Research in Cardiology, 106, 1207–20.

    Article  CAS  PubMed  Google Scholar 

  29. Guillory, A. N., Clayton, R. P., Herndon, D. N., & Finnerty, C. C. (2016). Cardiovascular dysfunction following burn injury: what we have learned from rat and mouse models. International Journal of Molecular Sciences, 17, 53.

    Article  PubMed Central  Google Scholar 

  30. Lv, G. F., Dong, M. L., Hu, D. H., Zhang, W. F., Wang, Y. C., & Tang, C. W., et al. (2011). Insulin-mediated inhibition of p38 mitogen-activated protein kinase protects cardiomyocytes in severe burns. Journal of Burn Care & Research, 32, 591–9.

    Article  Google Scholar 

  31. Huang, Y. S. (2018). [Autophagy and hypoxic ischemic myocardial damage after severe burn]. Zhonghua Shao Shang Za Zhi, 34, 3–7.

    CAS  PubMed  Google Scholar 

  32. Jentzer, J. C., Chonde, M. D., & Dezfulian, C. (2015). Myocardial dysfunction and shock after cardiac arrest. BioMed Research International, 2015, 314796.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tril, V. E., Burlutskaya, A. V., & Polischuk, L. V. (2019). Metabolic cardiomyopathy in pediatrics. Reviews in Cardiovascular Medicine, 20, 73–80.

    Article  PubMed  Google Scholar 

  34. Stark, R., Grzelak, M., & Hadfield, J. (2019). RNA sequencing: the teenage years. Nature Reviews Genetics, 20, 631–56.

    Article  CAS  PubMed  Google Scholar 

  35. Hedlund, E., & Deng, Q. (2018). Single-cell RNA sequencing: technical advancements and biological applications. Molecular Aspects of Medicine, 59, 36–46.

    Article  CAS  PubMed  Google Scholar 

  36. Harris, M. A., et al. (2004). The Gene Ontology (GO) database and informatics resource. Nucleic Acids Research, 32, D258–261. Database issue.

    Article  CAS  PubMed  Google Scholar 

  37. Hu, R. H., Yu, Y. M., Costa, D., Young, V. R., Ryan, C. M., & Burke, J. F., et al. (1998). A rabbit model for metabolic studies after burn injury. Journal of Surgical Research, 75, 153–60.

    Article  CAS  Google Scholar 

  38. Horton, J. W., Sanders, B., White, D. J., & Maass, D. L. (2006). The effects of early excision and grafting on myocardial inflammation and function after burn injury. The Journal of Trauma, 61, 1069–77.

    Article  PubMed  Google Scholar 

  39. Jandziol, A., & Hayes, M. (2008). The cardiovascular response to burn injury. Current Anaesthesia & Critical Care, 19, 269–74.

    Article  Google Scholar 

  40. Timmers, L., et al. (2009). Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. Journal of the American College of Cardiology, 53, 501–10.

    Article  CAS  PubMed  Google Scholar 

  41. Falck, G., Skarra, S., & Jynge, P. (1999). Cardiac contractile function and electrolyte regulation during hyperosmolal stress: an experimental study in the isolated rabbit heart. Pharmacology & Toxicology, 84, 174–80.

    Article  CAS  Google Scholar 

  42. Swirski, F. K., & Nahrendorf, M. (2018). Cardioimmunology: the immune system in cardiac homeostasis and disease. Nature Reviews Immunology, 18, 733–44.

    Article  CAS  PubMed  Google Scholar 

  43. Xie, Y., Shi, X., Sheng, K., Han, G., Li, W., & Zhao, Q., et al. (2019). PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review). Molecular Medicine Reports, 19, 783–91.

    CAS  PubMed  Google Scholar 

  44. Weeks, K. L., Bernardo, B. C., Ooi, J. Y. Y., Patterson, N. L., & McMullen, J. R. (2017). The IGF1-PI3K-Akt signaling pathway in mediating exercise-induced cardiac hypertrophy and protection. Advances in Experimental Medicine and Biology, 1000, 187–210.

    Article  CAS  PubMed  Google Scholar 

  45. Sun, Y., Liu, W. Z., Liu, T., Feng, X., Yang, N., & Zhou, H. F. (2015). Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. Journal of Receptor & Signal Transduction Research, 35, 600–4.

    Article  CAS  Google Scholar 

  46. Du, X. J., Wei, J., Tian, D., Yan, C., Hu, P., & Wu, X., et al. (2019). NEAT1 promotes myocardial ischemia-reperfusion injury via activating the MAPK signaling pathway. Journal of Cellular Physiology, 234, 18773–80.

    Article  CAS  PubMed  Google Scholar 

  47. Ren, G. D., Y, Y. C., Li, W. L., Li, F. F., & Han, X. Y. (2019). Research on cardioprotective effect of irbesartan in rats with myocardial ischemia-reperfusion injury through MAPK-ERK signaling pathway. European Review for Medical and Pharmacological Sciences, 23, 5487–94.

    PubMed  Google Scholar 

  48. Padmavathi, G., Banik, K., Monisha, J., Bordoloi, D., Shabnam, B., & Arfuso, F., et al. (2018). Novel tumor necrosis factor-α induced protein eight (TNFAIP8/TIPE) family: functions and downstream targets involved in cancer progression. Cancer Letters, 432, 260–71.

    Article  CAS  PubMed  Google Scholar 

  49. Tian, M., Yuan, Y. C., Li, J. Y., Gionfriddo, M. R., & Huang, R. C. (2015). Tumor necrosis factor-α and its role as a mediator in myocardial infarction: A brief review. Chronic Diseases and Translational Medicine, 1, 18–26.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cho, K., Pham, T. N., Crivello, S. D., Jeong, J., Green, T. L., & Greenhalgh, D. G. (2004). Involvement of CD14 and toll-like receptor 4 in the acute phase response of serum amyloid A proteins and serum amyloid P component in the liver after burn injury. Shock, 21, 144–50.

    Article  CAS  PubMed  Google Scholar 

  51. Cho, K., Thomas, R. L., & Greenhalgh, D. G. (2003). CD14-dependent regulation of Grp78 in the liver and lungs of mice after burn injury. Experimental and Molecular Pathology, 75, 148–53.

    Article  CAS  PubMed  Google Scholar 

  52. Steinstraesser, L., Alarcon, W., Fan, M. H., Klein, R. D., Aminlari, A., & Zuccaro, C., et al. (2002). Thermal injury induces expression of CD14 in human skin. Burns, 28, 223–30.

    Article  PubMed  Google Scholar 

  53. Barber, R. C., Aragaki, C. C., Chang, L. Y., Purdue, G. F., Hunt, J. L., & Arnoldo, B. D., et al. (2007). CD14-159 C allele is associated with increased risk of mortality after burn injury. Shock, 27, 232–7.

    Article  CAS  PubMed  Google Scholar 

  54. Barber, R. C., Maass, D. L., White, D. J., Chang, L. Y., & Horton, J. W. (2008). Molecular or pharmacologic inhibition of the CD14 signaling pathway protects against burn-related myocardial inflammation and dysfunction. Shock, 30, 705–13.

    Article  CAS  PubMed  Google Scholar 

  55. An, D., Hao, F., Hu, C., Kong, W., Xu, X., & Cui, M. Z. (2017). JNK1 mediates lipopolysaccharide-induced CD14 and SR-AI expression and macrophage foam cell formation. Frontiers in Physiology, 8, 1075.

    Article  PubMed  Google Scholar 

  56. Grahnert, A., Weiss, R., Schilling, E., Stanslowsky, N., Sack, U., & Hauschildt, S. (2019). CD14 counterregulates lipopolysacharide-induced tumor necrosis factor-α production in a macrophage subset. Journal of Innate Immunity, 11, 359–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was funded by the National Natural Science Foundation of China (81772080).

Author information

Authors and Affiliations

Authors

Contributions

X.Z. conceived and designed the study and critically revised the paper. Z.Z. performed the experiments, analyzed the data, and drafted the paper. B.Z., S.G., D.Z., J.G., B.C., and H.H. participated in the study design, study implementation, and paper revision. All authors read and approved the final paper.

Corresponding author

Correspondence to Xiongxiang Zhu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Ethics Approval

All animal programs were approved by the animal ethics committees of the Forevergen Laboratory Animal Center.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Zou, B., Gao, S. et al. CD14 Involvement in Third-degree Skin Burn-induced Myocardial Injury via the MAPK Signaling Pathway. Cell Biochem Biophys 80, 139–150 (2022). https://doi.org/10.1007/s12013-021-00995-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-021-00995-w

Keywords

Navigation