Skip to main content
Log in

Prediction of the Dst Geomagnetic Index Using Adaptive Methods

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

The potential is investigated of predicting the time series of the Dst geomagnetic index using various adaptive methods: artificial neural networks (classical multilayer perceptrons), decision trees (random forest), gradient boosting. The prediction is based on the parameters of the solar wind and interplanetary magnetic field measured at the Lagrange point L1 in the ACE spacecraft experiment. It is shown that the best prediction skill of the three adaptive methods is demonstrated by gradient boosting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

REFERENCES

  1. N. A. Barkhatov, A. E. Levitin, and G. A. Ryabkova, “Artificial Neural Networks for Predicting Geomagnetic Activity Indices Based on Near-Earth Space Parameters,” in Solar-terrestrial Physics, No. 2 (Irkutsk, 2002) [in Russian].

  2. B. M. Vladimirskii and N. A. Temur’yants, Effects of Solar Activity on the Biosphere–Noosphere (MNEPU, Moscow, 2000) [in Russian].

    Google Scholar 

  3. Yu. I. Ermolaev and M. Yu. Ermolaev, “Solar and Interplanetary Sources of Geomagnetic Storms: Space Weather Aspects,” Geofizicheskie Processy i Biosfera, No. 1, 8 (2009) [in Russian].

    Google Scholar 

  4. A. O. Efitorov, I. N. Myagkova, V. R. Shirokii, and S. A. Dolenko, “The Prediction of the Dst Index Based on Machine Learning Methods,” Kosmicheskie Issledovaniya, No. 6, 56 (2018) [Cosmic Res., No. 6, 56 (2018)].

    Article  Google Scholar 

  5. L. L. Lazutin, Global and Polar Magnetic Storms (MGU, Moscow, 2012) [in Russian].

    Google Scholar 

  6. A. L. Chizhevskii, Terrestrial Echo of Solar Storms (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  7. V. R. Shirokii, “Comparison of Neural Network Models for Predicting the Geomagnetic Dst Index Based on Different Datasets and Comparison of Methods for the Model Performance Assessment,” in Proceedings of the 17th All-Russian Scientific and Technical Conference “Neuroinformatics-2015” with International Participation, Part 2 (NIYaU MIFI, Moscow, 2015) [in Russian].

  8. S.-I. Akasofu and S. Chapman, Solar-terrestrial Physics (Clarendon Press, Oxford, 1972).

    Google Scholar 

  9. E. Amata, G. Pallocchia, G. Consolini, M. F. Marcucci, and I. Bertello, “Comparison between Three Algorithms for Dst Predictions over the 2003–2005 Period,” J. Atmos. Solar-Terr. Phys., 70 (2008).

    Article  Google Scholar 

  10. N. Barkhatov, N. S. Bellustin, A. E. Levitin, and S. Yu. Sakharov, “Comparison of Efficiency of Artificial Neural Networks for Forecasting the Geomagnetic Activity Index Dst,” Radiophysics and Quantum Electronics, No. 5, 43 (2000).

    Article  Google Scholar 

  11. L. Breiman, “Random Forests,” Mach. Learn, No. 1, 45 (2001).

  12. R. K. Burton, R. L. McPherron, and C. T. Russell, “An Empirical Relationship between Interplanetary Conditions and Dst,” J. Geophys. Res., 80 (1975).

    Article  Google Scholar 

  13. D. G. Cole, “Space Weather: Its Effects and Predictability,” Space Sci. Rev., 107 (2003).

    Google Scholar 

  14. I. A. Daglis, Space Storms and Space Weather Hazards (Kluwer Academic Publ., Dordrecht, 2001).

    Book  Google Scholar 

  15. S. A. Dolenko, Yu. V. Orlov, I. G. Persiantsev, and Ju. S. Shugai, “Neural Network Algorithm for Events Forecasting and Its Application to Space Physics Data,” Lecture Notes in Computer Science, 3697 (2005).

  16. J. H. Friedman, “Stochastic Gradient Boosting,” Computational Statistics and Data Analysis, 38 (1999).

    Article  Google Scholar 

  17. S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed. (Prentice Hall, 1998).

    Google Scholar 

  18. N. Iucci, A. E. Levitin, A. V. Belov, E. A. Eroshenko, N. G. Ptitsyna, G. Villoresi, G. V. Chizhenkov, L. I. Dorman, L. I. Gromova, M. Parisi, M. I. Tyasto, and V. Yanke, “Space Weather Conditions and Spacecraft Anomalies in Different Orbits,” Space Weather, No. 1, 3 (2005).

  19. R. Kataoka and Y. Miyoshi, “Average Profiles of the Solar Wind and Outer Radiation Belt during the Extreme Flux Enhancement of Relativistic Electrons at Geosynchronous Orbit,” Ann. Geophys., 26 (2008).

    Article  Google Scholar 

  20. G. M. Lindsay, C. T. Russell, and J. G. Luhmann, “Predictability of Dst Index Based upon Solar Wind Conditions Monitored Inside 1 AU,” J. Geophys. Res., 104 (1999).

    Article  Google Scholar 

  21. R. L. McPherron and T. P. O’Brien, “Predicting Geomagnetic Activity: The Dst Index,” in Space Weather, Ed. by P. Song, H. J. Singer, and G. L. Siscoe (American Geophysical Union, Washington, D.C., 2001).

    Google Scholar 

  22. I. Myagkova, V. Shiroky, and S. Dolenko, “Prediction of Geomagnetic Indexes with the Help of Artificial Neural Networks,” E3S Web of Conferences, 20 (2017).

  23. I. N. Myagkova, Yu. S. Shugay, I. S. Veselovsky, and O. S. Yakovchouk, “Comparative Analysis of Recurrent High-speed Solar Wind Streams Influence on the Radiation Environment of Near-Earth Space in April–July 2010,” Solar Syst. Res., No. 2, 47 (2013).

    Article  Google Scholar 

  24. T. P. O’Brien and R. L. McPherron, “Forecasting the Ring Current Index Dst in Real Time,” J. Atmos. and Solar-Terr. Phys.,62 (2000).

    Article  Google Scholar 

  25. G. Pallochia, E. Amata, G. Consolini, M. F. Marcucci, and I. Bertello, “Geomagnetic Dst Index Forecast Based on IMF Data Only,” Ann. Geophys., 24 (2006).

    Article  Google Scholar 

  26. S. Patra, E. Spencer, W. Horton, and J. Sojka, “Study of Dst/Ring Current Recovery Times Using the WINDMI Model,” J. Geophys. Res., 116 (2011).

  27. T. V. Podladchikova and A. A. Petrukovich, “Extended Geomagnetic Storm Forecast Ahead of Available Solar Wind Measurements,” Space Weather: The International Journal of Research and Applications, 10 (2012).

  28. G. D. Reeves, K. L. McAdams, R. H. W. Friedel, and T. P. O’Brien, “Acceleration and Loss of Relativistic Electrons during Geomagnetic Storms,” Geophys. Res. Lett., 30 (2003).

  29. M. Revallo, P. Valach, P. Hejda, and J. Bochniceket, “Modeling of CME and CIR Driven Geomagnetic Storms by Means of Artificial Neural Networks,” J. Atmos. Solar-Terr. Phys., No. 9, 110 (2014).

    Google Scholar 

  30. C. Schrijver, K. Kauristie, A. Aylward, C. Denardini, S. Gibson, A. Glover, N. Gopalswamy, M. Grande, M. Hapgood, D. Heynderickx, N. Jakowski, V. Kalegaev, G. Lapenta, J. Linker, S. Liu, C. Mandrini, I. Mann, T. Nagatsuma, D. Nandi, and N. Vilmer, “Understanding Space Weather to Shield Society: A Global Road Map for 2015–2025 Commissioned by COSPAR and ILWS,” Adv. Space Res., 2 (2015).

    Article  Google Scholar 

  31. M. V. Stepanova and P. Perez, “Autoprediction of Dst Index Using Neural Network Techniques and Relationship to the Auroral Geomagnetic Indices,” Geofis. int., No. 1, 39 (2000).

    Article  Google Scholar 

  32. M. Sugiura, “Hourly Values of Equatorial Dst for the IGY,” Ann. Int. Geophys., 35 (1964).

  33. J.-G. Wu and H. Lundstedt, “Geomagnetic Storm Predictions from Solar Wind Data with the Use of Dynamic Neural Networks,” J. Geophys. Res., No. A7, 102 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Myagkova.

Additional information

Translated from Meteorologiya i Gidrologiya, 2021, No. 3, pp. 38-46. https://doi.org/10.52002/0130-2906-2021-3-38-46.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myagkova, I.N., Shirokii, V.R., Vladimirov, R.D. et al. Prediction of the Dst Geomagnetic Index Using Adaptive Methods. Russ. Meteorol. Hydrol. 46, 157–162 (2021). https://doi.org/10.3103/S1068373921030031

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373921030031

Keywords

Navigation