Skip to main content
Log in

Dynamics of Relativistic Electron Fluxes of the Outer Radiation Belt during Geomagnetic Disturbances of Different Intensity

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The results of a study of the dependence of the dynamics of relativistic electron fluxes of the Earth’s outer radiation belt on the geomagnetic storm intensity are presented. A total of 22 geomagnetic storms with |Dst|max of ∼50 to ∼200 nT are considered. The studies are based on experimental data on fluxes of electrons with an energy of ~2 MeV received from the Van Allen Probe spacecraft in the core of radiation belts and from the GOES satellite in geostationary orbit. It is shown that the dominant influence on the dynamics of relativistic electrons in the core of the Earth’s outer radiation belt during strong magnetic storms with |Dst|max ~ ≥120 nT is exerted by global changes of the magnetospheric magnetic field, which lead to adiabatic variations of fluxes of relativistic electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Alexeev, I.I., Belenkaya, E.S., Kalegaev, V.V., and Lutov, Yu.G., Electric fields and field-aligned current generation in the magnetosphere, J. Geophys. Res., 1993, vol. 98, no. A3, pp. 4041–4051.

    Article  Google Scholar 

  2. Alexeev, I.I., Kalegaev, V.V., Belenkaya, E.S., et al., The model description of magnetospheric magnetic field in the course of magnetic storm on January 9–12, J. Geophys. Res., 1997, vol. 106, no. A11, pp. 25683–25694.

    Article  Google Scholar 

  3. Anderson, B.R., Millan, R.M., Reeves, G.D., and Friedel, R.H.W., Acceleration and loss of relativistic electrons during small geomagnetic storms, Geophys. Res. Lett., 2015, vol. 42, no. 23, pp. 10113–10119. https://doi.org/10.1002/2015GL066376

    Article  Google Scholar 

  4. Antonova, E.E., Stepanova, M.V., Moya, P.S., Pinto, V.A., Vovchenko, V.V., Ovchinnikov, I.L., and Sotnikov, N.V., Processes in auroral oval and outer electron radiation belt, Earth, Planets Space, 2018, vol. 70, pp. 127–137. https://doi.org/10.1186/s40623-018-0898-1

    Article  Google Scholar 

  5. Baker, D.N., Erickson, P.J., Fennell, J.F., Foster, J.C., Jaynes, A.N., and Verronen, P.T., Space weather effects in the Earth’s radiation belts, Space Sci. Rev., 2018, vol. 214, no. 17, pp. 1–60. https://doi.org/10.1007/s11214-017-0452-7

    Article  Google Scholar 

  6. Blake, J.B., Baker, D.N., Turner, N., Ogilvie, K.W., and Lepping, R.P., Correlation of changes in the outer-zone relativistic electron population with upstream solar wind and magnetic field measurements. Geophys. Res. Lett., 1997, vol. 24, no. 8, pp. 927–929. https://doi.org/10.1029/97GL00859

    Article  Google Scholar 

  7. Friedel, R.H., Reeves, W.G.P., and Obara, T., Relativistic electron dynamics in the inner magnetosphere: A review, J. Atmos. Sol.-Terr. Phys., 2002, vol. 64, pp. 265–282. https://doi.org/10.1016/S1364-6826(01)00088-8

    Article  Google Scholar 

  8. Georgiou, M., Daglis, I.A., Rae, I.J., et al., Ultra-low frequency waves as an intermediary for solar wind energy input into the radiation belts, J. Geophys. Res.: Space Phys., 2018, vol. 123, pp. 10090–10108. https://doi.org/10.1029/2018JA025355

    Article  Google Scholar 

  9. Horne, R.B., Thorne, R.M., Glauert, S.A., Albert, J.M., Meredith, N.P., and Anderson, R.R., Timescale for radiation belt electron acceleration by whistler mode chorus waves, J. Geophys. Res., 2005, vol. 110, A03225. https://doi.org/10.1029/2004HA010811

    Article  Google Scholar 

  10. Kalegaev, V.V. and Vlasova, N.A., Dynamics of the ring current–magnetotail currents relationships during geomagnetic storms of different intensity, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 5, pp. 529–534. https://doi.org/10.1134/S0016793217040089

  11. Kalegaev, V.V., Vlasova, N.A., and Peng, Z., Dynamics of the magnetosphere during geomagnetic storms on January 21–22, 2005 and December 14–15, 2006, Cosmic. Res., 2015, vol. 53, no. 2, pp. 98–110. https://doi.org/10.1134/S0010952515020033

    Article  Google Scholar 

  12. Kalegaev, V., Panasyuk, M., Myagkova, I., et al., Monitoring analysis and post-casting of the Earth’s particle radiation environment during February 14–March 5, 2014, J. Space Weather Space Clim., 2019, vol. 9, id A29. https://doi.org/10.1051/swsc/2019029.

  13. Lazutin, L.L., Dmitriev, A.V., and Suvorova, A.V., Electron radiation belt dynamics during magnetic storms and in quiet time, Sol.-Terr. Phys., 2018, vol. 4, no. 1, pp. 51–60. https://doi.org/10.12737/stp-41201805

    Article  Google Scholar 

  14. Lyatsky, W. and Khazanov, G.V., Effect of solar wind density on relativistic electrons at geosynchronous orbit, Geophys. Res. Lett., 2008, vol. 35, L03109. https://doi.org/10.1029/2007GL032524

    Article  Google Scholar 

  15. Mauk, B.H., Fox, N.J., Kanekal, S.G., Kessel, R.L., Sibeck, D.G., and Ukhorskiy, A., Science objectives and rationale for the radiation belt storm probes mission, Space Sci. Rev., 2013, vol. 179, pp. 3–27. https://doi.org/10.1007/s11214-012-9908-y

    Article  Google Scholar 

  16. McIlwain, C.E., Ring current effects on trapped particles, J. Geophys. Res., 1966, vol. 71, pp. 3623–3628.

    Article  Google Scholar 

  17. Moya, P.S., Pinto, V.A., Sibeck, D.G., Kanekal, S.G., and Baker, D.N., On the effect of geomagnetic storms on relativistic electrons in the outer radiation belt: Van Allen probes observations, J. Geophys. Res.: Space Phys., 2017, vol. 122, pp. 11100–11108. https://doi.org/10.1002/2017JA024735

    Article  Google Scholar 

  18. Newell, P.T., Sotirelis, T., Liou, K., Meng, C.-I., and Rich, F.J., A nearly universal solar wind–magnetosphere coupling function inferred from 10 magnetospheric state variables, J. Geophys. Res., 2007, vol. 112, A01206. https://doi.org/10.1029/2006JA012015

    Article  Google Scholar 

  19. Paulikas, G.A. and Blake, J.B., Effects of the solar wind on magnetospheric dynamics: Energetic electrons at the synchronous orbit, in Quantitative Modeling of Magnetospheric Processes, Am. Geophys. Union, 1979, vol. 21, pp. 180–186.

    Google Scholar 

  20. Pavlov, N.N., Tverskaya, L.V., Tverskoi, B.A., and Chuchkov, E.A., Variations of Energetic Particles of Radiation Belts during a Strong Magnetic Storm on March 24–26, 1991, Geomagn. Aeron., 1993, vol. 33, no. 6, p. 41–45.

    Google Scholar 

  21. Reeves, G.D., McAdams, K.L., Friedel, R.H.W., and O’Brien, T.P., Acceleration and loss of relativistic electrons during geomagnetic storms, Geophys. Res. Lett., 2003, vol. 30, no. 10, pp. 1529–1564. https://doi.org/10.1029/2002GL016513

    Article  Google Scholar 

  22. Reeves, G.D., Spence, H.E., Henderson, M.G., et al., Electron acceleration in the heart of the Van Allen radiation belts, Science, vol. 341, pp. 991–994. https://doi.org/10.1126/science.1239879

  23. Shprits, Y.Y., Subbotin, D.A., Meredith, N.P., and Elkington, S., Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: Local acceleration and losses, J. Atmos. Sol.-Terr. Phys., 2008, vol. 70, pp. 1694–1713. https://doi.org/10.1016/j.jastp.2008.06.014

    Article  Google Scholar 

  24. Søraas, F., Aarsnes, K., Oksavik, K., and Evans, D.S., Ring current intensity estimated from low-altitude proton observations, J. Geophys. Res., vol. 107, no. A7, pp. 1149–1159. https://doi.org/10.1029/2001JA000123

  25. Spence, H.E., Reeves, G.D., Baker, D.N., et al., Science goals and overview of the energetic particle, composition, and thermal plasma (ECT) suite on NASA’s radiation belt storm probes (RBSP) mission, Space Sci. Rev., 2013, pp. 311–336. https://doi.org/10.1007/s11214-013-0007-5

  26. Turner, D.L., Shprits, Y., Hartinger, M., and Angelopoulos, V., Explaining sudden losses of outer radiation belt electrons during geomagnetic storms, Nat. Phys., 2012, vol. 8, pp. 208–212. https://doi.org/10.1038/nphys2185

    Article  Google Scholar 

  27. Tverskaya, L.V., On the boundary of electron injection into the Earth’s magnetosphere, Geomagn. Aeron., 1986, vol. 26, pp. 864–865.

    Google Scholar 

  28. Tverskaya, L.V., Diagnostics of the magnetosphere based on the outer belt relativistic electrons and penetration of solar protons: A review, Geomagn. Aeron. (Engl. Transl.), 2011, vol. 51, no. 1, pp. 6–22.

  29. Tverskaya, L.V., Pavlov, N.N., Blake, J.B., Selesnick, R.S., and Fennell, J.F., Predicting the L-position of the storm-injected relativistic electron belt, Adv. Space Res., 2003, vol. 31, no. 4, pp. 1039–1044.

    Article  Google Scholar 

  30. Tverskoi, B.A., Formation mechanism for the structure of the magnetic-storm ring current, Geomagn. Aeron. (Engl. Transl.), 1997, vol. 37, no. 5, pp. 555–559.

  31. Tverskoi, B.A., Dinamika radiatsionnykh poyasov Zemli (Dynamics of the Earth’s Radiation Belts), Moscow: Nauka, 1968; Osnovy teoreticheskoi kosmofiziki. Izbrannye trudy (Fundamentals of Theoretical Space Physics. Selected Works), Moscow: URSS, 2004.

  32. Ukhorskiy, A.Y., Anderson, B.J., Brandt, P.C., and Tsyganenko, N.A., Storm time evolution of the outer radiation belt: Transport and losses, J. Geophys. Res.: Space Phys., 2006, vol. 111, A11S03. https://doi.org/10.1029/2006JA011690

    Article  Google Scholar 

  33. Vernov, S.N., Chudakov, A.E., Vakulov, P.V., and Logachev, YuI., Radiation measurement during the flight of the second Soviet space rocket, in Proc. First International Space Science Symposium (Space Research), Amsterdam: North-Holland, 1960, pp. 845–851.

  34. Vlasova, N.A., Kalegaev, V.V., Nazarkov, I.S., and Prost, A., Magnetic field variations and dynamics of the outer electron radiation belt of the Earth’s magnetosphere in February 2014, Geomagn. Aeron. (Engl. Transl.), 2020, vol. 60, no. 1, pp. 7–19. https://doi.org/10.1134/S0016793220010144

  35. Xiao, F., Chang Yang, Zhaoguo He, et al., Chorus acceleration of radiation belt relativistic electrons during march 2013 geomagnetic storm, J. Geophys. Res.: Space Phys., 2014, vol. 119, pp. 3325–3332. https://doi.org/10.1002/2014JA019822

    Article  Google Scholar 

  36. Zhao, H., Baker, D.N., Jaynes, A.N., Li, X., Elkington, S.R., Kanekal, S.G., Spence, H.E., Boyd, A.J., Huang, C.-L., and Forsyth, C., On the relation between radiation belt electrons and solar wind parameters/geomagnetic indices: Dependence on the first adiabatic invariant and L*, J. Geophys. Res., 2017, vol. 122, no. 2, pp. 1624–1642. https://doi.org/10.1002/2016JA023658

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The geomagnetic-index data were obtained at the World Data Center C2 for Geomagnetism, Kyoto. The experimental data from measurements onboard the Van Allen Probe spacecraft and the GOES-15 satellite were obtained at the Space Physics Data Facility (SPDF) of the National Aeronautics and Space Administration (NASA)/Goddard Space Flight Center (GSFC) and the CDAWeb (Coordinated Data Analysis Web) (https://cdaweb.sci.gsfc.nasa.gov).

Funding

This work was supported in part by the Russian Foundation for Basic Research, project no. 19-05-00960.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Vlasova.

Additional information

Translated by M. Samokhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlasova, N.A., Kalegaev, V.V. & Nazarkov, I.S. Dynamics of Relativistic Electron Fluxes of the Outer Radiation Belt during Geomagnetic Disturbances of Different Intensity. Geomagn. Aeron. 61, 331–340 (2021). https://doi.org/10.1134/S0016793221030178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793221030178

Navigation