Skip to main content
Log in

Influence of Factors Distorting the Paleomagnetic Record on the Estimation of the Parameters of Ancient Secular Geomagnetic Variations Based on the Results of Layer-by-Layer Studies of Sedimentary Sections

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The results of numerical modeling of the influence of the main factors distorting the paleomagnetic record in sedimentary rocks are presented: signal averaging and inclination underestimation and estimation of the parameters of secular variations (their amplitude, the degree of elongation of the distribution of directions, and the direction of elongation of this distribution) recorded in sedimentary sections.As an example of the practical application of the results obtained on their basis, the prospects of the Honako-2 section, one of the best loess sections in Central Asia, are assessed for the possible discovery of records of geomagnetic excursions in this section. Numerical estimates are obtained for the probability of detecting excursions of different types in the paleomagnetic record of the upper levels of this section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Biggin, A.J., van Hinsbergen, D.J., Langereis, C.G., Straathof, G.B., and Deenen, M.H., Geomagnetic secular variation in the Cretaceous Normal Superchron and in the Jurassic, Phys. Earth Planet. Inter., 2008, vol. 169, no. 2, pp. 3‒19. https://doi.org/10.1016/j.pepi.2008.07.004

    Article  Google Scholar 

  2. Chenet, A.L., Fluteau, F., Courtillot, V., Gerard, M., and Subbarao, K.V., Determination of rapid Deccan eruptions across the Cretaceous–Tertiary boundary using paleomagnetic secular variation: Results from a 1200-m-thick section in the Mahabaleshwar escarpment, J. Geophys. Res.: Solid Earth, 2008, vol. 113, B04101. https://doi.org/10.1029/2006JB004635

    Article  Google Scholar 

  3. Cox, A., Latitude dependence of the angular dispersion of the geomagnetic field, Geophys. J. R. Astron. Soc., 1970, vol. 20, no. 3, pp. 253–269. https://doi.org/10.1111/j.1365-246X.1970.tb06069.x

    Article  Google Scholar 

  4. Dodonov, A.E., Chetvertichnyi period Srednei Azii (The Quaternary of Middle Asia), Moscow: Geos, 2002.

  5. Dodonov, A.E. and Ranov, V.A., The Anthropogene of Middle Asia: Stratigraphy, correlation, and Paleolithic, in Chetvertichnaya geologiya i geomorfologiya. 27-i MGK (Quaternary Geology and Geomorphology: 27th International Geological Congress), Moscow: Nauka, 1984, vol. 3, pp. 67–81.

  6. Heller, F., Meili, B., Wang, J., Li, H., and Liu, T., Magnetization and sedimentation history of loess in the central loess plateau of China, in Aspects of Loess Research, Liu, T., Ed., Beijing: China Ocean Press, 1987, pp. 147–163.

    Google Scholar 

  7. Hongre, L., Hulot, G., and Khokhlov, A., An analysis of the geomagnetic field over the past 2000 years, Phys. Earth Planet. Inter., 1998, vol. 106, pp. 311–315.

    Article  Google Scholar 

  8. Johnson, C.L., Constable, C.G., Tauxe, L., et al., Recent investigations of the 0–5 Ma geomagnetic field recorded by lava flows, Geochem. Geophys. Geosyst., 2008, vol. 9, Q04032. https://doi.org/10.1029/2007GC001696

    Article  Google Scholar 

  9. Khokhlov, A.V., Simulation of secular geomagnetic variations. Principles and implementation, Geofiz. Issled., 2012, vol. 13, no. 2, pp. 50–61.

    Google Scholar 

  10. King, R.F., The remanent magnetism of artificially deposited sediments, Geophys. J. Int., 1955, vol. 7, pp. 115–134.

    Article  Google Scholar 

  11. Korte, M., Constable, C., Donadini, F., and Holme, R., Reconstructing the Holocene geomagnetic field, Earth Planet. Sci. Lett., vol. 312, pp. 497–505. https://doi.org/10.1016/j.epsl.2011.10.031

  12. Laj, C. and Channell, J.E.T., Geomagnetic excursions, in Treatise on Geophysics, vol. 5: Geomagnetism, Kono, M., Ed., Amsterdam: Elsevier, 2007, pp. 373–416.

  13. Lisiecki, L.E. and Raymo, M.E., A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 2005, vol. 20, A1003. https://doi.org/10.1029/2004PA001071

    Article  Google Scholar 

  14. McElhinny, M.W. and McFadden, P.L., Palaeosecular variation over the past 5 Myr based on a new generalized database, Geophys. J. Int., 1997, vol. 131, no. 2, pp. 240–252.

    Article  Google Scholar 

  15. Nowaczyk, N.R., Arz, H.W., Frank, U., Kind, J., and Plessen, B., Dynamics of the Laschamp geomagnetic excursion from Black Sea sediments, Earth Planet. Sci. Lett., 2012, vols. 351–352, pp. 54–69. https://doi.org/10.1016/j.epsl.2012.06.050

  16. Osete, M.L., Martín-Chivelet, J., Rossi, C., Edwards, R.L., Egli, R., Muñoz-García, M.B., Wang, X., Pavón-Carrasco, F.J., and Heller, F., The Blake geomagnetic excursion recorded in a radiometrically dated speleothem, Earth Planet. Sci. Lett., vols. 353–354, 2012, pp. 173–181. https://doi.org/10.1016/j.epsl.2012.07.041

    Article  Google Scholar 

  17. Pavlov, V.E., Fluteau, F., Latyshev, A.V., Fetisova, A.M., Elkins-Tanton, L.T., Black, B.A., Burgess, S.D., and Veselovskiy, R.V., Geomagnetic secular variations at the Permian-Triassic boundary and pulsed magmatism during eruption of the Siberian traps, Geochem. Geophys. Geosyst., 2019, vol. 20, no. 2, pp. 773–791. https://doi.org/10.1029/2018GC007950

    Article  Google Scholar 

  18. Ranov, V.A. and Schaffer, J., The forest Paleolithic, Arkheol., Etnogr. Antropol. Evrazii, 2000, no. 2, pp. 20–32.

  19. Tauxe, L. and Kent, D., A simplified statistical model for the geomagnetic field and the detection of shallow bias in paleomagnetic inclinations: Was the ancient magnetic field dipolar?, in Timescales of the Internal Geomagnetic Field, Channell, J.E.T., Kent, D.V., Lowrie, W., and Meert, J.G., Eds., AGU, 2004, vol. 145, pp. 101–115.

  20. Tauxe, L., Kodama, K., and Kent, D.V., Testing corrections for paleomagnetic inclination error in sedimentary rocks: A comparative approach, Phys. Earth Planet. Inter., 2008, vol. 169, pp. 152–165. https://doi.org/10.1016/j.pepi.2008.05.006

    Article  Google Scholar 

  21. Vandamme, D., A new method to determine paleosecular variation, Phys. Earth Planet. Inter., 1994, vol. 85, pp. 131–142.

    Article  Google Scholar 

  22. Zhu, R., Guo, B., Pan, Y., Liu, Q., Zeman, A., and Suchy, V., Reliability of geomagnetic secular variations recorded in a loess section at Lingtai, North-Central China, Sci. China Ser. D: Earth, 2000, vol. 43, no. 1, pp. 1–9. https://doi.org/10.1007/BF02877826

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, grant no. 19-47-0411 (numerical modeling, interpretation of results, preparation of the article), and by the Russian Foundation for Basic Research, project no. 18-00-00470 (field work at the Honako-2 section).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. E. Pavlov, Sh. R. Bogoutdinov or O. A. Meshcheryakova.

Additional information

Translated by E. Morozov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlov, V.E., Bogoutdinov, S.R. & Meshcheryakova, O.A. Influence of Factors Distorting the Paleomagnetic Record on the Estimation of the Parameters of Ancient Secular Geomagnetic Variations Based on the Results of Layer-by-Layer Studies of Sedimentary Sections. Geomagn. Aeron. 61, 399–415 (2021). https://doi.org/10.1134/S0016793221020092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793221020092

Navigation