Skip to main content

Advertisement

Log in

Spatial–temporal heterogeneity in a small lake and its implication for paleoclimate reconstruction

  • Research paper
  • Published:
Limnology Aims and scope Submit manuscript

Abstract

Lakes provide continuous records of past regional and global climate. Most studies utilize single trench section dig from the lake shore margins or from single core in the central part/depocenter of the lakes for paleoclimate reconstruction. These reconstructions are based on the assumption of homogenous sedimentation across the lake. However, single core approach for paleoclimate reconstruction is often debated due to inter-site spatial and temporal variations in sedimentation and proxy responses. Therefore, in the present study, we explored the spatial–temporal heterogeneity in a small post-glacial lake of the Lahaul Himalaya and its influence on paleoclimate reconstruction. The depocenter of lake received ~ 2.5 times higher average sedimentation compared to the shore margin. Despite the distinct sedimentation rate in depocenter and shore margin, environmental magnetic and total organic carbon (TOC) records showed similar environmental signals over equivalent time periods. The depocenter core provided high-resolution lacustrine environment, whereas the marginal trench recorded major shifts in paleoclimate over a longer time scale. New multi-proxy data showed strengthened Indian summer monsoon (ISM) during medieval climate anomaly (MCA) and weakened ISM during little ice age (LIA) in the NW Himalaya.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All the data reported in the research article are provided in the manuscript and supplementary files.

References

  • Ali SN, Agrawal S, Sharma A, Phartiyal B, Morthekai P, Govil P, Bhushan R, Farooqui S, Jena PS, Shivam A (2020) Holocene hydroclimatic variability in the zanskar valley, northwestern Himalaya, India. Quat Res 97:140–156

    CAS  Google Scholar 

  • Anderson NJ (1990) Variability of diatom concentrations and accumulation rates in sediments of a small lake basin. Limnol Oceanogr 35:497–508

    Google Scholar 

  • Bali R, Khan I, Sangode SJ, Mishra AK, Ali SN, Singh SK, Tripathi JK, Singh DS, Srivastava P (2017) Mid-to late Holocene climate response from the Triloknath palaeolake, Lahaul Himalaya based on multiproxy data. Geomorphology 284:206–219

    Google Scholar 

  • Bhargava ON, Srivastava RN, Gadhoke SK (1991) The proterozoic-palaeozoic spiti sedimentary basin. Sedimentary Basins of India. In: Tectonic context. Gyanodaya Prakashan, Nainital, p 236–260

  • Bhattacharyya A (1988) Vegetation and climate during postglacial period in the vicinity of Rohtang Pass, Great Himalayan Range. Pollen Spores 30:417–427

    Google Scholar 

  • Bhattacharyya A, Chauhan MS (1997) Vegetational and climatic changes during recent past around Tipra bank glacier, Garhwal Himalaya. Curr Sci 72:408–412

    Google Scholar 

  • Bhushan R, Sati SP, Rana N, Shukla AD, Mazumdar AS, Juyal N (2018) High-resolution millennial and centennial scale Holocene monsoon variability in the Higher Central Himalayas. Palaeogeogr Palaeoclimatol Palaeoecol 489:95–104

    Google Scholar 

  • Blaauw M, Christen JA (2011) Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal 6:457–474

    Google Scholar 

  • Bogotá-A RG, Groot MHM, Hooghiemstra H, Lourens LJ, Van der Linden M, Berrio JC (2011) Rapid climate change from north Andean Lake Fúquene pollen records driven by obliquity: implications for a basin-wide biostratigraphic zonation for the last 284 ka. Quat Sci Rev 30:3321–3337

    Google Scholar 

  • Bohra A, Kotlia BS (2015) Tectono-climatic signatures during Late Quaternary in the Yunam basin, Baralacha Pass (upper Lahaul valley, India), derived from multi-proxy records. Quat Int 371:111–121

    Google Scholar 

  • Burbank DW (1982) Rapid late Pleistocene uplift rates from the Pir Panjal range, northwestern Himalaya. In: Seventh AMQUA conference proceeding, Abstract, p 78

  • Charles DF, Dixit SS, Cumming BF, Smol JP (1991) Variability in diatom and chrysophyte assemblages and inferred pH: paleolimnological studies of Big Moose Lake, New York, USA. J Paleolimnol 5:267–284

    Google Scholar 

  • Chauhan MS (2006) Late Holocene vegetation and climate change in the alpine belt of Himachal Pradesh. Curr Sci 91:1562–1567

    Google Scholar 

  • Chauhan MS, Sharma C (2000) Late Holocene vegetation and climate in Dewar Tal area, Inner Lesser Garhwal Himalaya. Palaeobotanist 49:509–551

    Google Scholar 

  • Chauhan MS, Mazari RK, Rajagopalan G (2000) Vegetation and climate in upper Spiti region, Himachal Pradesh during late Holocene. Curr Sci 79:373–377

    Google Scholar 

  • Chen J, An Z, Head J (1999) Variation of Rb/Sr ratios in the loess-paleosol sequences of central China during the last 130,000 years and their implications for monsoon paleoclimatology. Quat Res 51:215–219

    CAS  Google Scholar 

  • Condie KC, Dengate J, Cullers RL (1995) Behavior of rare earth elements in a paleoweathering profile on granodiorite in the Front Range, Colorado, USA. Geochim Cosmochim Acta 59:279–294

    CAS  Google Scholar 

  • Davis MB, Ford MS (1982) Sediment focusing in Mirror Lake, New Hampshire. Limnol Oceanogr 27:137–150

    Google Scholar 

  • Dekkers MJ (1990) Magnetic properties of natural goethite—III. Magnetic behaviour and properties of minerals originating from goethite dehydration during thermal demagnetization. Geophys J Int 103:233–250

    Google Scholar 

  • Demske D, Tarasov PE, Wünnemann B, Riedel F (2009) Late glacial and Holocene vegetation, Indian monsoon and westerly circulation in the Trans-Himalaya recorded in the lacustrine pollen sequence from Tso Kar, Ladakh, NW India. Palaeogeogr Palaeoclimatol Palaeoecol 279:172–185

    Google Scholar 

  • Dixit Y, Hodell DA, Petrie CA (2014) Abrupt weakening of the summer monsoon in northwest India~ 4100 yr ago. Geology 42:339–342

    CAS  Google Scholar 

  • Dixit Y, Hodell DA, Giesche A, Tandon SK, Gazquez F, Saini HS, Skinner LC, Mujtaba SA, Pawar V, Singh RN, Petrie CA (2018) Intensified summer monsoon and the urbanization of Indus Civilization in northwest India. Sci Rep 8:4225. https://doi.org/10.1038/s41598-018-22504-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunlop DJ (2002) Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. J Geophys Res Solid Earth. https://doi.org/10.1029/2001JB000487

    Article  Google Scholar 

  • Dutt S, Gupta AK, Wünnemann B, Yan D (2018) A long arid interlude in the Indian summer monsoon during∼ 4,350 to 3,450 cal. yr BP contemporaneous to displacement of the Indus valley civilization. Quatern Int 482:83–92

    Google Scholar 

  • Dutt S, Gupta AK, Singh M, Jaglan S, Saravanan P, Balachandiran P, Singh A (2019) Climate variability and evolution of the Indus civilization. Quat Int 507:15–23

    Google Scholar 

  • Fedo CM, Wayne Nesbitt H, Young GM (1995) Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23:921–924

    CAS  Google Scholar 

  • Fedotov AP, Phedorin MA, De Batist M, Ziborova GA, Kazansky AY, Semenov MY, Matasova GG, Khabuev AV, Kugakolov SA, Rodyakin SV, Krapivina SM (2008) A 450-ka long record of glaciation in Northern Mongolia based on studies at Lake Khubsugul: high-resolution reflection seismic data and grain-size variations in cored sediments. J Paleolimnol 39:335–348

    Google Scholar 

  • Finsinger W, Belis C, Blockley SP, Eicher U, Leuenberger M, Lotter AF, Ammann B (2008) Temporal patterns in lacustrine stable isotopes as evidence for climate change during the late glacial in the Southern European Alps. J Paleolimnol 40:885–895

    Google Scholar 

  • Fritz CS, Baker PA, Tapia P, Garland J (2006) Spatial and temporal variation in cores from Lake Titicaca, Bolivia/Peru during the last 13,000 yrs. Quat Int 158:23–29

    Google Scholar 

  • Gälman V, Rydbergde-Luna JSS, Bindler Renberg RI (2008) Carbon and nitrogen loss rates during aging of lake sediment: changes over 27 years studied in varved lake sediment. Limnol Oceanogr 53:1076–1082

    Google Scholar 

  • Gälman V, Rydberg J, Bigler C (2009) Decadal diagenetic effects on δ13C and δ15N studied in varved lake sediment. Limnol Oceanogr 54:917–924

    Google Scholar 

  • Garnier JM, Garnier J, Debnath P, Prado LF, Yokoyama E, Das RK, Mathé PE, Islam MS (2020) Late Holocene paleoenvironmental records in Eastern Bangladesh from lake sediments: a multi-proxy approach. Quat Int 558:39–46

    Google Scholar 

  • Gasse F, Fontes JC, Van Campo E, Wei K (1996) Holocene environmental changes in Bangong Co Basin (Western Tibet), Part 4: discussion and conclusion. Palaeogeogr Palaeoclimatol Palaeoecol 120:79–82

    Google Scholar 

  • Giesche A, Staubwasser M, Petrie CA, Hodell DA (2019) Indian winter and summer monsoon strength over the 4.2 ka BP event in foraminifer isotope records from the Indus River delta in the Arabian Sea. Clim past 15:73–90

    Google Scholar 

  • Hanesch M, Stanjek H, Petersen N (2006) Thermomagnetic measurements of soil iron minerals: the role of organic carbon. Geophys J Int 165:53–61

    CAS  Google Scholar 

  • Hedrick KA, Seong YB, Owen LA, Caffee MW, Dietsch C (2011) Towards defining the transition in style and timing of Quaternary glaciation between the monsoon-influenced Greater Himalaya and the semi-arid Trans Himalaya of Northern India. Quat Int 236:21–33

    Google Scholar 

  • Hilton J (1985) A conceptual framework for predicting the occurrence of sediment focusing and sediment redistribution in small lakes. Limnol Ocenaogr 30:1131–1143

    Google Scholar 

  • Hilton J, Lishman JP, Allen PV (1986) The dominant processes of sediment distribution and focusing in a small, eutrophic, monomictic lake. Limnol Oceanogr 31:125–133

    Google Scholar 

  • Hodell DA, Brenner M, Kanfoush SL, Curtis JH, Stoner JS, Xueliang S, Yuan W, Whitmore TJ (1999) Paleoclimate of southwestern China for the past 50,000 yr inferred from lake sediment records. Quat Res 52:369–380

    CAS  Google Scholar 

  • Jin Z, Wang S, Shen JI, Zhang E, Li F, Ji J, Lu X (2001) Chemical weathering since the Little Ice Age recorded in lake sediments: a high-resolution proxy of past climate. Earth Surf Proc Landf 26:775–782

    CAS  Google Scholar 

  • Jin Z, Cao J, Wu J, Wang S (2006) A Rb/Sr record of catchment weathering response to Holocene climate change in Inner Mongolia. Earth Surf Proc Landf 31:285–291

    CAS  Google Scholar 

  • Johnson TC, Van Alstine JD, Rolfhus KR, Colman SM, Wattrus NJ (2012) A high resolution study of spatial and temporal variability of natural and anthropogenic compounds in offshore Lake Superior sediments. J Great Lakes Res 38:673–685

    CAS  Google Scholar 

  • Jordanova D, Jordanova N (2016) Thermomagnetic behavior of magnetic susceptibility-heating rate and sample size effects. Front Earth Sci 3:90. https://doi.org/10.3389/feart.2015.00090

    Article  Google Scholar 

  • Jovane L, Florindo F, Acton G, Ohneiser C, Sagnotti L, Strada E, Verosub KL, Wilson GS, Iacoviello F, Levy RH, Passchier S (2019) Miocene glacial dynamics recorded by variations in magnetic properties in the ANDRILL-2A drill core. J Geophys Res Solid Earth 124:2297–2312

    CAS  Google Scholar 

  • Kar A, Ranhotra PS, Bhattacharyya A, Sekar B (2002) Vegetation vis-a-vis climate and glacial fluctuations of the Gangotri glacier since the last 2000 years. Curr Sci 82:347–351

    Google Scholar 

  • Kathayat G, Cheng H, Sinha A, Yi L, Li X, Zhang H, Li H, Ning Y, Edwards RL (2017) The Indian monsoon variability and civilization changes in the Indian subcontinent. Sci Adv. https://doi.org/10.1126/sciadv.1701296

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirby ME, Poulsen CJ, Lund SP, Patterson WP, Reidy L, Hammond DE (2004) Late Holocene lake level dynamics inferred from magnetic susceptibility and stable oxygen isotope data: Lake Elsinore, southern California (USA). J Paleolimnol 31:275–293

    Google Scholar 

  • Kotlia B, Joshi L (2013) Late Holocene climatic changes in Garhwal Himalaya. Curr Sci 104:911–919

    CAS  Google Scholar 

  • Kotlia BS, Singh AK, Joshi LM, Dhaila BS (2015) Precipitation variability in the Indian Central Himalaya during last ca. 4,000 years inferred from a speleothem record: Impact of Indian Summer Monsoon (ISM) and Westerlies. Quat Int 371:244–253

    Google Scholar 

  • Kumar O, Ramanathan AL, Bakke J, Kotlia BS, Shrivastava JP (2020) Disentangling source of moisture driving glacier dynamics and identification of 82 ka event: evidence from pore water isotopes, Western Himalaya. Sci Rep 10:15324. https://doi.org/10.1038/s41598-020-71686-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leipe C, Demske D, Tarasov PE (2014) A Holocene pollen record from the northwestern Himalayan lake Tso Moriri: Implications for palaeoclimatic and archaeological research. Quat Int 348:93–112

    Google Scholar 

  • Liu J, Chen J, Selvaraj K, Xu Q, Wang Z, Chen F (2014) Chemical weathering over the last 1200 years recorded in the sediments of Gonghai Lake, Lvliang Mountains, North China: a high-resolution proxy of past climate. Boreas 43:914–923

    Google Scholar 

  • Lone AM, Achyuthan H, Shah RA, Sangode SJ, Kumar P, Chopra S, Sharma R (2020) Paleoenvironmental shifts spanning the last~ 6000 years and recent anthropogenic controls inferred from a high-altitude temperate lake: Anchar Lake, NW Himalaya. Holocene 30:23–36

    Google Scholar 

  • Lu Y, Meyers PA, Eadie BJ, Robbins JA (2010) Carbon cycling in Lake Erie during cultural eutrophication over the last century inferred from the stable carbon isotope composition of sediments. J Paleolimnol 43:261–272

    Google Scholar 

  • Mann ME, Jones PD (2003) Global surface temperatures over the past two millenia. Geophys Res Lett 30:1820. https://doi.org/10.1029/2003GL017814

    Article  Google Scholar 

  • Maxbauer DP, Feinberg JM, Fox DL (2016) MAX UnMix: a web application for unmixing magnetic coercivity distributions. Comput Geosci 95:140–145

    Google Scholar 

  • Mazari RK, Bagati TN, Chauhan MS, Rajagopalan G (1995) Palaeoclimatic record of last 2000 years in Trans-Himalayan Lahaul-Spiti Region. In: Proceedings of Nagoya IGBP-PAGES/PEP-II symposium, pp 262–269

  • Minyuk PS, Borkhodoev VY, Wennrich V (2014) Inorganic geochemistry data from Lake El’gygytgyn sediments: marine isotope stages 6–11. Clim past 10:467–485

    Google Scholar 

  • Mishra PK, Anoop A, Schettler G, Prasad S, Jehangir A, Menzel P, Naumann R, Yousuf AR, Basavaiah N, Deenadayalan K, Wiesner MG (2015a) Reconstructed late quaternary hydrological changes from Lake Tso Moriri, NW Himalaya. Quat Int 371:76–86

    Google Scholar 

  • Mishra PK, Prasad S, Anoop A, Plessen B, Jehangir A, Gaye B, Menzel P, Weise SM, Yousuf AR (2015b) Carbonate isotopes from high altitude Tso Moriri Lake (NW Himalayas) provide clues to late glacial and Holocene moisture source and atmospheric circulation changes. Palaeogeogr Palaeoclimatol Palaeoecol 425:76–83

    Google Scholar 

  • Mishra PK, Prasad S, Marwan N, Anoop A, Krishnan R, Gaye B, Basavaiah N, Stebich M, Menzel P, Riedel N (2018) Contrasting pattern of hydrological changes during the past two millennia from central and northern India: regional climate difference or anthropogenic impact? Glob Planet Change 161:97–107

    Google Scholar 

  • Misra P, Tandon SK, Sinha R (2019) Holocene climate records from lake sediments in India: assessment of coherence across climate zones. Earth Sci Rev 190:370–397

    Google Scholar 

  • Nesbitt HW, Markovics G (1997) Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments. Geochim Cosmochim Acta 61:1653–1670

    CAS  Google Scholar 

  • Nesbitt H, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299:715–717

    CAS  Google Scholar 

  • Nesbitt HW, Markovics G, Price RC (1980) Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochim Cosmochim Acta 44:1659–1666

    CAS  Google Scholar 

  • Owen LA, Benn DI, Derbyshire E, Evans DJA, Mitchell WA, Richardson S (1996) The Quaternary glacial history of the Lahul Himalaya, Northern India. J Quat Sci 11:25–42

    Google Scholar 

  • Owen LA, Gualtieri L, Finkel RC, Caffee MW, Benn DI, Sharma MC (2001) Cosmogenic radionuclide dating of glacial landforms in the Lahul Himalaya, northern India: defining the timing of Late Quaternary glaciations. J Quat Sci 16:555–563

    Google Scholar 

  • Parcha SK, Pandey S (2016) Trace fossils and microbially induced sedimentary structures from the early Cambrian successions of the Chandratal area, Spiti Basin, Tethys Himalaya. J Palaeontol Soc India 61:9–18

    Google Scholar 

  • Peters C, Dekkers MJ (2003) Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size. Phys Chem Earth A/b/c 28:659–667

    Google Scholar 

  • Petterson G, Renberg I, Geladi P, Lindberg A, Lindgren F (1993) Spatial uniformity of sediment accumulation in varved lake sediments in northern Sweden. J Paleolimnol 9:195–208

    Google Scholar 

  • Phadtare NR (2000) Sharp decrease in summer monsoon strength 4000–3500 cal yr BP in the Central Higher Himalaya of India based on pollen evidence from alpine peat. Quat Res 53:122–129

    Google Scholar 

  • Phartiyal B, Singh R, Joshi P, Nag D (2020) Late-Holocene climatic record from a glacial lake in Ladakh range, Trans-Himalaya, India. Holocene 30:1029–1042

    Google Scholar 

  • Phartiyal B, Singh R, Nag D, Sharma A, Agnihotri R, Prasad V, Yao T, Karthick B, Joshi P, Gahlaud SK, Thakur B (2021) Reconstructing climate variability during the last four millennia from trans-Himalaya (Ladakh-Karakoram, India) using multiple proxies. Palaeogeogr Palaeoclimatol Palaeoecol. https://doi.org/10.1016/j.palaeo.2020.110142

    Article  Google Scholar 

  • Pokharia AK, Agnihotri R, Sharma S, Bajpai S, Nath J, Kumaran RN, Negi BC (2017) Altered cropping pattern and cultural continuation with declined prosperity following abrupt and extreme arid event at~ 4,200 yrs BP: Evidence from an Indus archaeological site Khirsara, Gujarat, western India. PLoS ONE. https://doi.org/10.1371/journal.pone.0185684

    Article  PubMed  PubMed Central  Google Scholar 

  • Pokharia AK, Kharakwal JS, Sharma S, Spate M, Tripathi D, Dimri AP, Liu X, Thakur B, Basumatary SK, Srivastava A, Mahar KS (2020) Variable monsoons and human adaptations: archaeological and palaeoenvironmental records during the last 1400 years in north-western India. Holocene 30:1332–1344

    Google Scholar 

  • Prasad S, Anoop A, Riedel N, Sarkar S, Menzel P, Basavaiah N, Krishnan R, Fuller D, Plessen B, Gaye B, Röhl U (2014) Prolonged monsoon droughts and links to Indo-Pacific warm pool: a Holocene record from Lonar Lake, central India. Earth Planet Sci Lett 391:171–182

    CAS  Google Scholar 

  • Prasad S, Marwan N, Eroglu D, Goswami B, Mishra PK, Gaye B, Anoop A, Basavaiah N, Stebich M, Jehangir A (2020) Holocene climate forcings and lacustrine regime shifts in the Indian summer monsoon realm. Earth Surf Proc Land 45:3842–3853

    Google Scholar 

  • Quamar MF (2019) Vegetation dynamics in response to climate change from the wetlands of Western Himalaya, India: Holocene Indian summer monsoon variability. Holocene 29:345–362

    Google Scholar 

  • Rawat S, Phadtare NR, Sangode SJ (2012) The Younger Dryas cold event in NW Himalaya based on pollen record from the lake sediments in Himachal Pradesh, India. Curr Sci 102:1193–1198

    Google Scholar 

  • Rawat S, Gupta AK, Sangode SJ, Srivastava P, Nainwal HC (2015a) Late Pleistocene-Holocene vegetation and Indian summer monsoon record from the Lahaul, Northwest Himalaya, India. Quat Sci Rev 114:167–181

    Google Scholar 

  • Rawat S, Gupta AK, Srivastava P, Sangode SJ, Nainwal HC (2015b) A 13,000 year record of environmental magnetic variations in the lake and peat deposits from the Chandra valley, Lahaul: implications to Holocene monsoonal variability in the NW Himalaya. Palaeogeogr Palaeoclimatol Palaeoecol 440:116–127

    Google Scholar 

  • Rawat V, Rawat S, Srivastava P, Negi PS, Prakasam M, Kotlia BS (2021a) Middle Holocene Indian summer monsoon variability and its impact on cultural changes in the Indian subcontinent. Quat Sci Rev 255:106825. https://doi.org/10.1016/j.quascirev.2021.106825

    Article  Google Scholar 

  • Rawat V, Rawat S, Srivastava P, Negi PS, Prakasam M, Kotlia BS (2021b) Multiproxy paleoclimate dataset from the Bednikund alpine lake in the Central Himalaya. Data Brief 35:106930. https://doi.org/10.1016/j.dib.2021.106930

    Article  PubMed  PubMed Central  Google Scholar 

  • Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwel PG, Bronk Ramsey C, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–1887

    CAS  Google Scholar 

  • Roberts AP, Cui Y, Verosub KL (1995) Wasp-waisted hysteresis loops: mineral magnetic characteristics and discrimination of components in mixed magnetic systems. J Geophys Res Solid Earth 100:17909–17924

    Google Scholar 

  • Rowan AV (2017) The ‘Little Ice Age’ in the Himalaya: a review of glacier advance driven by Northern Hemisphere temperature change. Holocene 27:292–308

    Google Scholar 

  • Rühland K, Phadtare NR, Pant RK, Sangode SJ, Smol JP (2006) Accelerated melting of Himalayan snow and ice triggers pronounced changes in a valley peatland from northern India. Geophys Res Lett 33:L15709. https://doi.org/10.1029/2006GL026704

    Article  Google Scholar 

  • Saha S, Owen LA, Orr EN, Caffee MW (2018) Timing and nature of Holocene glacier advances at the northwestern end of the Himalayan-Tibetan orogen. Quat Sci Rev 187:177–202

    Google Scholar 

  • Sarkar S, Wilkes H, Prasad S, Brauer A, Riedel N, Stebich M, Basavaiah N, Sachse D (2014) Spatial heterogeneity in lipid biomarker distributions in the catchment and sediments of a crater lake in central India. Org Geochem 66:125–136

    CAS  Google Scholar 

  • Schiefer E (2006) Depositional regimes and areal continuity of sedimentation in a montane lake basin, British Columbia, Canada. J Paleolimnol 35:617–628

    Google Scholar 

  • Shah RA, Achyuthan H, Lone AM, Kumar S, Kumar P, Sharma R, Amir M, Singh AK, Dash C (2020) Holocene palaeoenvironmental records from the high-altitude Wular Lake, Western Himalayas. Holocene 30:733–743

    Google Scholar 

  • Shamurailatpam MS, Kumar O, Ramanathan AL (2020) Testing the reliable proxies to understand the mid-Holocene climate variability records from Chandratal lake, Western Himalayas. Quat Int. https://doi.org/10.1016/j.quaint.2020.11.003

    Article  Google Scholar 

  • Sharma S, Joachimski M, Sharma M, Tobschall HJ, Singh IB, Sharma C, Chauhan MS, Morgenroth G (2004) Lateglacial and Holocene environmental changes in Ganga plain, Northern India. Quat Sci Rev 23:145–159

    Google Scholar 

  • Sharma A, Kumar K, Laskar A, Singh SK, Mehta P (2017) Oxygen, deuterium, and strontium isotope characteristics of the Indus River water system. Geomorphology 284:5–16

    Google Scholar 

  • Shekhar M, Bhardwaj A, Singh S, Ranhotra PS, Bhattacharyya A, Pal AK, Roy I, Martín-Torres FJ, Zorzano MP (2017) Himalayan glaciers experienced significant mass loss during later phases of little ice age. Sci Rep 7:10305. https://doi.org/10.1038/s41598-017-09212-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Gupta AK, Rawat S, Bhaumik AK, Kumar P, Rai SK (2021) Paleomonsoonal shifts during 13700 to 3100 yr BP in the central Ganga Basin, India with a severe arid phase at 4.2 ka. Quat Int. https://doi.org/10.1016/j.quaint.2021.01.015

  • Srikantia SV, Bhargava ON (2018) Stratigraphic nomenclature of early Palaeozoics of the Spiti Himalaya: Cobweb cleared. J Paleontol Soc India 63:233–241

    Google Scholar 

  • Srivastava P, Agnihotri R, Sharma D, Meena N, Sundriyal YP, Saxena A, Bhushan R, Sawlani R, Banerji US, Sharma C, Bisht P (2017a) 8000-year monsoonal record from Himalaya revealing reinforcement of tropical and global climate systems since mid-Holocene. Sci Rep 7:14515. https://doi.org/10.1038/s41598-017-15143-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava P, Kumar A, Chaudhary S, Meena N, Sundriyal YP, Rawat S, Rana N, Perumal RJ, Bisht P, Sharma D, Agnihotri R (2017b) Paleofloods records in Himalaya. Geomorphology 284:17–30

    Google Scholar 

  • Srivastava P, Siddaiah NS, Sangode SJ, Meshram DC (2018a) Trace element behavior in moderately weathered boles from the Deccan volcanic province: implications for paleoenvironment. CATENA 169:151–163

    CAS  Google Scholar 

  • Srivastava P, Siddaiah NS, Sangode SJ, Meshram DC (2018b) Mineralogy and geochemistry of various colored boles from the Deccan volcanic province: implications for paleoweathering and paleoenvironmental conditions. CATENA 167:44–59

    CAS  Google Scholar 

  • Srivastava P, Kumar A, Singh R, Deepak O, Kumar AM, Ray Y, Jayangondaperumal R, Phartiyal B, Chahal P, Sharma P, Ghosh R (2020) Rapid lake level fall in Pangong Tso (lake) in Ladakh, NW Himalaya: a response of late Holocene aridity. Curr Sci 119:219–231

    CAS  Google Scholar 

  • Staubwasser M, Sirocko F, Grootes PM, Segl M (2003) Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability. Geophys Res Lett 30:1425. https://doi.org/10.1029/2002GL016822

    Article  Google Scholar 

  • Steinhilber F, Beer J, Fröhlich C (2009) Total solar irradiance during the Holocene. Geophys Res Lett. https://doi.org/10.1029/2009GL040142

  • Wang J, Zhu L, Nishimura M, Nakamura T, Ju J, Xie M, Takahiro W, Testsuya M (2009) Spatial variability and correlation of environmental proxies during the past 18,000 years among multiple cores from Lake Pumoyum Co, Tibet, China. J Paleolimnol 42:303–315

    Google Scholar 

  • Wang Y, Shen J, Wang Y, Liu X, Cao X, Herzschuh U (2020) Abrupt mid-Holocene decline in the Indian Summer Monsoon caused by tropical Indian Ocean cooling. Clim Dyn 55:1961–1977

    Google Scholar 

  • Williamson D, Jelinowska A, Kissel C, Tucholka P, Gibert E, Gasse F, Massault M, Taieb M, Van Campo E, Wieckowski K (1998) Mineral-magnetic proxies of erosion/oxidation cycles in tropical maar-lake sediments (Lake Tritrivakely, Madagascar): paleoenvironmental implications. Earth Planet Sci Lett 155:205–219

    CAS  Google Scholar 

  • Wünnemann B, Demske D, Tarasov P, Kotlia BS, Reinhardt C, Bloemendal J, Diekmann B, Hartmann K, Krois J, Riedel F, Arya N (2010) Hydrological evolution during the last 15 kyr in the Tso Kar lake basin (Ladakh, India), derived from geomorphological, sedimentological and palynological records. Quat Sci Rev 29:1138–1155

    Google Scholar 

  • Zhisheng A, Clemens SC, Shen J, Qiang X, Jin Z, Sun Y, Prell WL, Luo J, Wang S, Xu H, Cai Y, Zhou W, Liu X, Liu W, Shi Z, Yan L, Xiao X, Chang H, Wu F, Ai L, Lu F (2011) Glacial-interglacial Indian summer monsoon dynamics. Science 333:719–723

    Google Scholar 

Download references

Acknowledgements

We thank Director, Wadia Institute of Himalayan Geology and Head, Department of Geology, University of Pune for providing necessary working facilities. We acknowledge Dr. NR Phadtare for his help during the field work and Dr. PP Khanna and Dr. Shailesh Aggarwal for their help in geochemical measurements. We are thankful to Dr. Yogesh Kulkarni (GIT, India) and Mr. Saurabh Singh (JNU, India) for map preparation and discussion. We thank two anonymous reviewers for their insightful comments which helped in improving the overall quality and clarity of the paper. We also thank Editors Prof. Ichiro Tayasu and Jorge García Molinos for careful handling of the manuscript.

Funding

SR and SJS acknowledge Department of Science and Technology (DST), India project grant (SR/S4/ES-130/2004). SR acknowledges DST, India project grant ECR/2017/001046. AKG acknowledges J.C. Bose fellowship (SR/S2/JCB-80/2011). SJS acknowledges DST-FIST grant SR/FST/ESII-101/2010. PS is supported by Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) project 2019/11364-0 and LJ by FAPESP project 2016/24946-9.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SR, AKG and PS; sampling: SR and SJS; data curation: SR and PS; formal analysis: SR and PS; interpretation: PS, SR, AKG, LJ and SJS; writing—original draft: PS, SR, AKG and SJS; writing—review and editing: PS, SR and LJ.

Corresponding author

Correspondence to Suman Rawat.

Additional information

Handling Editor: Jorge García Molinos.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 134 KB)

Supplementary file2 (DOCX 7336 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rawat, S., Gupta, A.K., Srivastava, P. et al. Spatial–temporal heterogeneity in a small lake and its implication for paleoclimate reconstruction. Limnology 23, 17–35 (2022). https://doi.org/10.1007/s10201-021-00669-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10201-021-00669-9

Keywords

Navigation