Skip to main content
Log in

Experimental and analytical investigations of the transient temperature fields induced in stainless steel plate by an arc plasma jet for plasma-assisted milling

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

This paper presents the analytical and experimental results for transient temperature fields induced in a stainless steel plate by a low-powered arc plasma torch for plasma-assisted milling. For this purpose, we first measured arc efficiencies by using the calorimetric method for plasma power levels of (3–4) kW. The measurement results showed that low arc currents of ≤ 30 A can produce relatively low arc efficiencies of (35–36) %. Then, the heated stainless steel plate was cut to reveal the very shallow surface erosion by arc plasma heating that occurred within 1 mm depth. These experimental results indicate that the relatively low arc efficiencies resulted from the low arc currents designed to thermally soften the workpiece, rather than form a melting pool. Considering these arc heating effects confined to a shallow area near the surface, we employed a 2D surface Gaussian distributed heat source model in analytical modeling of the temperature evolution in the stainless steel plates. The unsteady temperature fields predicted by the analytical solutions show relatively good agreement with the experimental data, although the analytic results show the temperatures rising earlier and descending faster. From these comparisons, we expect that this work can contribute to the optimization of the plasma-assisted milling process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.E. Leshock, J.N. Kim, Y.C. Shin, Int. J. Mach. Tools Manuf. 41, 877 (2001)

    Article  Google Scholar 

  2. E.O. Ezugwu, Int. J. Mach. Tools Manuf. 45, 1353 (2005)

    Article  Google Scholar 

  3. S. Sun, M. Brandt, M.S. Dargusch, Int. J. Mach. Tools Manuf. 50, 663 (2010)

    Article  Google Scholar 

  4. Y. Xiang, D. Yu, Q. Li, H. Peng, X. Cao, J. Yao, J. Mater. Process. Technol. 226, 238 (2015)

    Article  Google Scholar 

  5. R. Ichiki, H. Nagamatsu, Y. Yasumatsu, T. Iwao, S. Akamine, S. Kanazawa, Mater. Lett. 71, 134 (2012)

    Article  Google Scholar 

  6. A.J. Hick, Heat Treat. Met. 1, 3–11 (1983)

    Google Scholar 

  7. S. Valkov, M. Ormanova, P. Petrov, Metals 10, 1219 (2020)

    Article  Google Scholar 

  8. L.N. Lopez de Lacalle, J.A. Sanchez, A. Lamikiz, A. Celaya, J. Manuf. Sci. Eng. 126, 274 (2004)

    Article  Google Scholar 

  9. Y.H. Lee, C.M. Lee, Materials 12, 25950 (2019)

    Google Scholar 

  10. S. Elhami, M.R. Razfar, M. Farahnakian, Int. J. Mech. Sci. 103, 158 (2015)

    Article  Google Scholar 

  11. H.G. Woo, H.S. Cho, Proc. Inst. Mech. Eng. 213(Part B), 695 (1999)

    Article  Google Scholar 

  12. G. Araya, G. Gutierrez, Int. J. Heat Mass Transf. 49, 4124 (2006)

    Article  Google Scholar 

  13. J. Goldak, M. Bibby, A. Chakravarti, Metall. Trans. B 15, 299 (1985)

    Article  Google Scholar 

  14. N.T. Nguyen, A. Ohta, K. Matsuoka, N. Suzuki, Y. Maeda, Weld. J. 78, 265-s (1999)

    Google Scholar 

  15. A. Ghosh, N. Barman, H. Chattopadhyay, S. Hloch, J. Mech. Eng. 59, 333 (2013)

    Article  Google Scholar 

  16. T.F. Flint, J.A. Francis, M.C. Smith, A.N. Vasileiou, Int. J. Therm. Sci. 138, 586 (2019)

    Article  Google Scholar 

  17. S.K. Jeong, H.S. Cho, Weld. J. 76, 223-s (1997)

    Google Scholar 

  18. N.S. Tsai, T.W. Eager, Metall. Trans. B 16, 841 (1985)

    Article  Google Scholar 

  19. A.B. Murphy, M. Tanaka, K. Yamamoto, S. Tashiro, J.J. Lowke, K. Ostrikov, Vacuum 85, 579 (2010)

    Article  ADS  Google Scholar 

  20. K.D. Cole, A. Haji-Sheikh, J.V. Beck, B. Litkouhi, Heat Conduction Using Greens Functions, 2nd edn. (Taylor and Francis, New York, 2011)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by research funds from Jeonbuk National University in 2021. This research was also supported by the Korea Hydro & Nuclear Power (KHNP) Co.(G18IO16). We thank the Korea Institute of Energy Technology Evaluation and Planning (KETEP) for their Grant (20191510301420) funded by the Korea government (MOTIE), and the support of Jeollannam-do (‘2020 R&D supporting program’ operated by Jeonnam Technopark).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Ho Seo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, MG., Lee, DH., Jeong, SM. et al. Experimental and analytical investigations of the transient temperature fields induced in stainless steel plate by an arc plasma jet for plasma-assisted milling. J. Korean Phys. Soc. 79, 283–289 (2021). https://doi.org/10.1007/s40042-021-00218-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00218-8

Keywords

Navigation