Skip to main content
Log in

Production of Ceramic Plates Based on Al2O3–TiB2 by Free SHS Compression

  • Published:
Refractories and Industrial Ceramics Aims and scope

Ceramic plates with dimensions of 90 × 40 × 7 mm and a density of 3.41 g/cm3 were obtained by the method of free SHS-compression. The resulting plates consist of three phases: aluminum oxide, titanium diboride, and mullite. The plates have a composite structure: a matrix based on Al2O3 with titanium diboride particles distributed in it. Also, in the structure of the obtained plates, whiskers of titanium monoboride with a thickness of about 100 nm were observed. The results of high-temperature tests of plates in the range of 900 – 1200°C for 10 hr are presented, the dependences of the true rate of weight gain and specific weight gain of samples during the tests are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. J. Poirier, E. Blond, E. de Bilbao, et al., “New advances in the laboratory characterization of refractories: testing and modelling,” Metall. Res. Technol., 114(6), 1 – 16 (2017).

    Article  Google Scholar 

  2. J. Poirier, “A review: influence of refractories on steel quality,” Metall. Res. Technol., 112(4), Article No. 410 (2015).

  3. V. V. Erokhin, “Manufacturing of cutting plates from mineral ceramics based on nanodispersed powders” [in Russian], Scientific and Technical Bulletin of the Bryansk State University, No. 4, 27 – 32 (2016).

  4. K. S. Torosyan, A. S. Sedegov, K. V. Kuskov, et al., “Reactive, nonreactive, and flash spark plasma sintering of Al2O3/SiC composites — A comparative study” [in Russian], J. Am. Ceram. Soc., 103(1), 520 – 530 (2020).

    Article  CAS  Google Scholar 

  5. P. Yang, G. Q. Xiao, D. H. Ding, et al., “Mechanism of self-propagating high-temperature synthesis of AlB2–Al2O3 composite powders,” Refract. Ind. Ceram., 60(1), 46 – 54 (2019).

    Article  CAS  Google Scholar 

  6. A. M. Abyzov, “Aluminum oxide and alumina ceramics (review). Part 1. Properties of Al2O3 and commercial production of dispersed Al2O3,” Refract. Ind. Ceram., 60(1), 24 – 32 (2019).

    Article  Google Scholar 

  7. G. P. Panasyuk, I. V. Kozerozhets, M. N. Danchevskaya, et al., “A new method for synthesis of fine crystalline magnesium aluminate spinel,” Dokl. Chem., 487, 218 – 220 (2019).

    Article  CAS  Google Scholar 

  8. G. P. Panasyuk, L. A. Azarova, V. N. Belan, et al., “Preparation of fine-grained corundum powders with given properties: crystal size and habit control,” Theor. Found. Chem. Eng., 52(5), 879 – 886 (2018).

    Article  CAS  Google Scholar 

  9. A. M. Abyzov, “Research on the development of high-quality aluminum oxide ceramic (review). Part 1. Sintering with additives, reactive sintering, production of reinforced composites,” Glass and Ceram., 75(7/8), 293 – 302 (2018).

    Article  CAS  Google Scholar 

  10. Z. J. Shen, M. Johnsson, Z. Zhao, et al., “Spark plasma sintering of alumina,” J. Am. Ceram. Soc., 85(8), 1921 – 1927 (2002).

    Article  CAS  Google Scholar 

  11. Q. Tai and A. Mocellin, “Review: High temperature deformation of Al2O3-based ceramic particle or whisker composites,” Ceram. Int., 25(5), 395 – 408 (1999).

    Article  CAS  Google Scholar 

  12. D. Galusek and D. Galuskova, “Alumina matrix composites with nonoxide nanoparticle addition and enhanced functionalities,” Nanomaterials, 5(1), 115 – 143 (2015).

    Article  Google Scholar 

  13. M. S. Li, C. Z. Huang, B. Zhao, et al., “Crack-healing behavior of Al2O3–TiB2–TiSi2 ceramic material,” Ceram. Int., 44(2), 2132 – 2137 (2018).

    Article  CAS  Google Scholar 

  14. M. S. Li, C. Z. Huang, B. Zhao, et al., “Mechanical properties and microstructure of Al2O3–TiB2–TiSi2 ceramic tool material,” Ceram. Int., 43(16), 14192 – 14199 (2017).

    Article  CAS  Google Scholar 

  15. S. F. Shi, T. Sekino, S. H. Cho, et al., “Ti and TiC co-toughened Al2O3 composites by in-situ synthesis from reaction of Ti and MWCNT,” Mat. Sci. Engineering A-Struct., 777, Article No. 139066 (2020).

    Article  CAS  Google Scholar 

  16. P. Klimczyk, P. Wyzga, J. Cyboron, et al., “Phase stability and mechanical properties of Al2O3c-BN composites prepared via spark plasma sintering,” Diam. Relat. Mater., 104, Article No. 107762 (2020).

    Article  CAS  Google Scholar 

  17. H. Schneider, J. Schreuer, and B. Hildmann, “Structure and properties of mullite — A review,” J. Eur. Ceram. Soc., 28(2), 329 – 344 (2008).

    Article  CAS  Google Scholar 

  18. N. Shaikh, K. Patel, S. Pandian, et al., “Self-propagating high-temperature synthesized ceramic materials for oil and gas wells: application and the challenges,” Arab. J. Geosci., 12(17), Article 1 538 (2019).

  19. H. D. Gao, Z. H. Wang, an J. Shao, “Manufacture and characteristics of Al2O3 composite coating on steel substrate by SHS process,” Rare Metals, 38(7), 704 – 712 (2019).

  20. A. S. Rogachev and A. S. Mukas’yan, Combustion for the Synthesis of Materials: an Introduction to Structural Macrokinetics [in Russian], Fizmatlit, Moscow (2012) 400 p.

  21. V. L. Kvanin and N. T. Balikhina, “Obtaining large-sized carbide products — one of the technological directions using the SHS process” [in Russian], Izvestiya Vuzov. Tsvetnaya Metallurgiya (Proceedings of Higher Schools. Nonferrous Metallurgy), No. 5, 50 – 61 (2006).

  22. A. P. Amosov, I. P. Borovinskaya, and A. G. Merzhanov, Powder Technology of Self-Propagating High-Temperature Synthesis of Materials [in Russian], Mashinostroenie, Moscow (2007) 567 p.

  23. A. Pazniak, P. Bazhin, I. Shchetinin, et al., “Dense Ti3AlC2 based materials obtained by SHS-extrusion and compression methods,” Ceram. Int., 45(2), 2020 – 2027 (2019).

    Article  CAS  Google Scholar 

  24. A. M. Stolin, P. M. Bazhin, A. S. Konstantinov, et al., “Free SHS-compression method for producing large-sized plates from ceramic materials,” Refract. Ind. Ceram., 60(3), 261 – 263 (2019).

    Article  CAS  Google Scholar 

  25. A. M. Stolin, P. M. Bazhin, A. S. Konstantinov, et al., “Production of large compact plates from ceramic powder materials by free SHS compaction,” Dokl. Chem., 480, 136 – 138.

  26. V. M. Aulchenko, V. V. Zhulanov, G. N. Kulipanov, et al., “Investigations of fast processes by x-ray diffraction methods at the Siberian Synchrotron and Terahertz Radiation Center,” Phys.-Usp., 61(6), 515 – 530 (2018).

    Article  CAS  Google Scholar 

  27. S. K. Mishra, V. Gokuul, and S. Paswan, “Alumina-titanium diboride in situ composite by self-propagating high-temperature synthesis (SHS) dynamic compaction: effect of compaction pressure during synthesis,” Int. J. Refract. Met. Hard Mater., 43, 19 – 24 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Chizhikov.

Additional information

Translated from Novye Ogneupory, No. 2, pp. 35 – 39, February 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chizhikov, A.P., Konstantinov, A.S. Production of Ceramic Plates Based on Al2O3–TiB2 by Free SHS Compression. Refract Ind Ceram 62, 94–97 (2021). https://doi.org/10.1007/s11148-021-00565-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-021-00565-w

Keywords

Navigation