Skip to main content

Advertisement

Log in

Bone diagenesis of tetrapods from the Middle Triassic Tarjados Formation: implication for depositional environment and palaeoclimate

  • Original Paper
  • Published:
Palaeobiodiversity and Palaeoenvironments Aims and scope Submit manuscript

Abstract

An understanding of the palaeoenvironmental and palaeoclimatic conditions that affects the preserved fossil record is a powerful tool aiding the reconstruction of past ecosystems. In this study, bone diagenesis is used as a sensitive indicator of the palaeoenvironmental and palaeoclimatic conditions during deposition of the Middle Triassic Tarjados Formation of western Argentina. The results provide new information that will improve palaeoecosystem reconstructions throughout western Gondwana. The tetrapod fossil record of the Tarjados Formation is scarce, mainly represented by isolated and dispersed bones. Bones from several stratigraphic levels were analysed. Different mineral infillings are recognised, such as sediment, iron oxides, and calcite. Based on the sequential precipitation of mineral infillings documented in the samples, we identified three diagenetic pathways. The stratigraphic distribution of the diagenetic pathways was analysed to evaluate the depositional and palaeoclimatic conditions through the Tarjados Formation. The integration of the sedimentology and stacking pattern with bone diagenesis suggests changes in the sediment supply and the strongly seasonal soil moisture fluctuations characterised by alternating short wet and long dry seasons, under an overall semi-arid climatic regime. This climatic evidence agrees with a palaeogeographic configuration with a local rain-shadow effect of highlands in contrast with the documented by Cuyana Basin, where the palaeogeographic configuration suggests without local rain-shadow effect with the wet period dominance over drier ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  • Artabe, A. E., Morel, E .M., & Spalletti, L. A. (2001). Paleoecología de las floras triásicas argentinas. In A. E. Artabe, E. M. Morel, . & A. B. Zamuner (Eds.), El Sistema Triásico en la Argentina (pp. 199–225). La Plata: Fundación Museo de La Plata “Francisco Pascasio Moreno”.

  • Artabe, A. E., Morel, E. M., Ganuza, D. G., Zavattieri, A. M., & Spalletti, L. A. (2007). La paleoflora triásica de Potrerillos, provincia de Mendoza, Argentina. Ameghiniana, 44, 279–301.

    Google Scholar 

  • Bao, H., Koch, P. L., & Hepple, R. P. (1998). Hematite and calcite coatings on fossil vertebrates. Journal of Sedimentary Research, 68, 727–738.

    Google Scholar 

  • Barredo, S. P., & Ramos, V. A. (2010). Características tectónicas y tectosedimentarias del hemigraben Rincón Blanco: una síntesis. Revista de la Asociación Geológica Argentina, 66, 133–145.

    Google Scholar 

  • Bastin, G. F., Van Loo, F. J. J., & Heijligers, H. J. M. (1986). Evaluation of the use of Gaussian φ (ρz) curves in quantitative electron probe microanalysis: a new optimization. X-Ray Spectrometry, 13, 91–97.

    Google Scholar 

  • Behrensmeyer, A. K. (1978). Taphonomic and ecological information from bone weathering. Paleobiology, 4, 150–162.

    Google Scholar 

  • Benavente, C. A., Mancuso, A. C., Cabaleri, N. G., & Gierlowski-Kordesch, E. H. (2015). Comparison of lacustrine successions and their paleohydrologic implications in the two sub-basins of the Triassic Cuyana rift, Argentina. Sedimentology, 62, 1771–1813.

    Google Scholar 

  • Benavente, C. A., Mancuso, A. C., & Bohacs, K. M. (2019). Paleohydrogeologic reconstruction of Triassic carbonate paleolakes from stable isotopes: encompassing two lacustrine models. Journal of South American Earth Sciences, 95(102292), 1–14.

    Google Scholar 

  • Berna, F., Matthews, A., & Weiner, S. (2004). Solubilities of bone mineral from archaeological sites: the recrystallization window. Journal of Archaeological Science, 31, 867–882.

    Google Scholar 

  • Bodzioch, A. (2015). Idealized model of mineral infillings in bones of fossil freshwater animals, on the example of Late Triassic Metoposaurs from Krasiejów (Poland). Austin Journal of Earth Science, 2, 1008.

    Google Scholar 

  • Bodzioch, A., & Kowal-Linka, M. (2012). Unraveling the origin of the Late Triassic multitaxic bone accumulation at Krasiejów (S Poland) by diagenetic analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 346-347, 25–36.

    Google Scholar 

  • Bonaparte, J. F. (1997). El Triásico de San Juan-La Rioja Argentina y sus Dinosaurios. Museo Argentino de Ciencias Naturales.

  • Brea, M., Artabe, A. E., & Spalletti, L. A. (2009). Darwin Forest at Agua de la Zorra: the first in situ forest discovered in South America by Darwin in 1835. Revista de la Asociación Geológica Argentina, 64, 21–31.

    Google Scholar 

  • Caselli, A.T. (1998). Estratigrafía y sedimentología de las formaciones Patquía (Pérmico) y Talampaya (Triásico inferior) en las Sierras Pampeanas Noroccidentales y Precordillera Central (provincias de La Rioja y San Juan), 437 pp. PhD thesis, Buenos Aires: Universidad de Buenos Aires.

  • Caselli, A. T. (2000). Estudios Sedimentológico de las Formaciones Talampaya y Tarjados (Triásico Inferior) en el flanco occidental de la Sierra de Sañogasta, Provincia de La Rioja (Argentina). Ameghiniana, 37, 39.

    Google Scholar 

  • Chinsamy, A., & Raath, M. A. (1992). Preparation of fossil bone for histological examination. Palaeontologia Africana, 29, 39–44.

    Google Scholar 

  • Clarke, J. B. (2004). A mineralogical method to determinate cyclicity in the taphonomic and diagenetic history of fossilized bones. Lethaia, 37, 281–284.

    Google Scholar 

  • Cook, E. (1995). Taphonomy of two non-marine Lower Cretaceous bone accumulations from southeastern England. Palaeogeography Palaeoclimatology Palaeoecology, 116, 263–270.

    Google Scholar 

  • Cox, C. B. (1965). New Triassic dicynodonts from South America, their origins and relationships. Philosophical Transactions of the Royal Society, 248, 457–516.

    Google Scholar 

  • Cox, C. B. (1968). The Chañares (Argentina) Triassic reptile fauna. IV. The dicynodont fauna. Breviora, 295, 1–27.

    Google Scholar 

  • Downing, K. F., & Park, L. E. (1998). Geochemistry and early diagenesis of mammal-bearing concretions from the Sucker Creek Formation (Miocene) of Southeastern Oregon. Palaios, 13, 14–27.

    Google Scholar 

  • Elliott, J. C. (2002). Calcium phosphate biominerals. In M. J. Kohn, J. Rakovan, & J. M. Huges (Eds.), Phosphates-Geochemical, Geobiological and Materials Importance (pp. 427–453). Mineralogical Society of America. Reviews in Mineralogy 48.

  • Elorza, J., Astibia, H., Murelaga, X., & Pereda-Suberbiola, X. (1999). Francolite as a diagenetic mineral in dinosaur and other Upper Cretaceous reptile bones (Laño, Iberian Peninsula): microstructural, petrological and geochemical features. Cretaceous Research, 20, 169–187.

    Google Scholar 

  • Ezcurra, M. D., Martinelli, A., Fiorelli, L. E., Da-Rosa, A. A. S., & Desojo, J. B. (2015). An archosauromorph diapsid from the Tarjados Formation (Early-Middle Triassic, NW Argentina). Ameghiniana, 52, 475–486.

    Google Scholar 

  • Fernández López, S. R., & Fernández Jalvo, Y. (2002). The limit between biostratinomy and fossildiagenesis. In M. De Renzi, M. V. Pardo Alonso, M. Belinchón, E. Peñalver, P. Montoya, & A. Márquez-Aliaga (Eds.), Current Topics on Taphonomy and Fossilization (pp. 27–37). Ayuntamiento de Valencia.

  • Fiorillo, A. R. (1988). Taphonomy of Hazard Homestead Quarry (Ogallala Group), Hitchcock County, Nebraska. Contributions to Geology, University of Wyoming, 26, 57–97.

    Google Scholar 

  • Fisher, J. A., Nichols, G. J., & Waltham, D. A. (2007). Unconfined flow deposits in distal sectors of fluvial distributary systems: examples from the Miocene Luna and Huesca Systems, northern Spain. Sedimentary Geology, 195, 55–73.

    Google Scholar 

  • Gulbranson, E. L., Montañez, I. P., Tabor, N. J., & Limarino, C. O. (2015). Late Pennsylvanian aridification on the southwestern margin of Gondwana (Paganzo Basin, NW Argentina): a regional expression of a global climate perturbation. Palaeogeography, Palaeoclimatology, Palaeoecology, 417, 220–235.

    Google Scholar 

  • Hollocher, K. T., Alcober, R. A., Colombi, C. E., & Hollocher, T. C. (2005). Carnivore Coprolites from the Upper Triassic Ischigualasto Formation, Argentina: Chemistry, Mineralogy, and Evidence for Rapid Initial Mineralization. Palaios, 20, 51–63.

    Google Scholar 

  • Holz, M. (2015). Mesozoic paleogeography and paleoclimates – a discussion of the diverse greenhouse and hothouse conditions of an alien world. Journal of South American Earth Sciences, 61, 91–107.

    Google Scholar 

  • Hubert, J. F., Panish, P. T., Chure, D. J., & Prostak, K. S. (1996). Chemistry, microstructure, petrology, and diagenetic model of Jurassic dinosaur bones, Dinosaur National Monument, Utah. Journal of Sedimentary Research, 66, 531–547.

    Google Scholar 

  • Kent, D. V., Santi Malnis, P., Colombi, C. E., Alcober, O. A., & Martínez, R. N. (2014). Age constraints on the dispersal of dinosaurs in the Late Triassic from magnetochronology of the Los Colorados Formation (Argentina). Proceedings of the National Academy of Sciences, 111, 7958–7963.

    Google Scholar 

  • Krapovickas, V., Mancuso, A. C., Marsicano, C. A., Domnanovich, N., & Schultz, C. (2013). Large tetrapod burrows from the Middle Triassic of Argentina: a behavioural adaptation to seasonal semi-arid climates? Lethaia, 46, 154–169.

    Google Scholar 

  • Kustatscher, E., van Konijnenburg-van Cittert, J. H. A., & Roghi, G. (2010). Macrofloras and palynomorphs as possible proxies for palaeoclimatic and palaeoecological studies: a case study from the Pelsonian (Middle Triassic) of Kühwiesenkopf/Monte Pra della Vacca (Olang Dolomites, N-Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 290, 71–80.

    Google Scholar 

  • Langer, M. C., Ezcurra, M. D., Bittencourt, J. S., & Novas, F. E. (2010). The origin and early evolution of dinosaurs. Biological Reviews, 85, 55–110.

    Google Scholar 

  • Langer, M. C., Ramezani, J., & Da Rosa, A. A. S. (2018). U-Pb age constraints on dinosaur rise from south Brazil. Gondwana Research, 57, 133–140.

    Google Scholar 

  • Lucas, J., & Prévôt, L. E. (1991). Phosphates and fossil preservation. In P. A. Allison & D. E. G. Briggs (Eds.), Taphonomy: Releasing the Data Locked in the Fossil Record (pp. 389–409). Plenum Press.

  • Luque, L., Alcalá, L., Mampel, L., Pesquero, M. D., Royo-Torres, R., Cobos, A., et al. (2009). Mineralogical, elemental and chemical composition of dinosaur bones from Teruel (Spain). Journal of Taphonomy, 7, 151–178.

    Google Scholar 

  • Mancuso, A. C. (2005). Revisión y aportes a la estratigrafía de la sección inferior del Grupo Agua de la Peña (Triásico Medio, Argentina). XVI Congreso Geológico Argentino, La Plata, Argentina, Actas, 3, 415–422.

    Google Scholar 

  • Mancuso, A. C., Schultz, C., Marsicano, C., Krapovickas, V., Domnanovich, N., Leardi, J. M., & Gaetano, L. (2010). El registro de los tetrápodos post-Pérmicos en la Cuenca Ischigualasto-Villa Unión (Formaciones Talampaya y Tarjados). Resúmenes del X Congreso Argentino de Paleontología y Bioestratigrafía, y VII Congreso Latinoamericano de Paleontología, La Plata, Argentina, 74.

  • Mancuso, A. C., Previtera, E., Benavente, C. A., & Hernandez del Pino, S. (2017). Evidence of bacterial decay and early diagenesis in a partially-articulated tetrapod from the Triassic Chañares Formation. Palaios, 32, 367–381.

    Google Scholar 

  • Mancuso, A. C., Krapovickas, V., Benavente, C. A., & Marsicano, C. A. (2020). An integrative physical, mineralogical, and ichnological approach to characterize underfilled lake-basin. Sedimentology. https://doi.org/10.1111/sed.12736.

  • Mancuso, A. C., Horn, B. L. D., Benavente, C. A., Schultz, C. L., & Irmis, R. (2021). The paleoclimatic context for South American Triassic vertebrate evolution. Journal of South American Earth Sciences, 110, 103321.

    Google Scholar 

  • Marsicano, C. A., Gallego, O., & Arcucci, A. (2001). Faunas del Triasico: relaciones patrones de distribución y sucesión temporal. In A. E. Artabe, E. M. Morel, & A. B. Zamuner (Eds.), El Sistema Triásico en la Argentina (pp. 23–54). La Plata: Fundación Museo de La Plata “Francisco Pascasio Moreno”.

  • Marsicano, C. A., Irmis, R. B., Mancuso, A. C., Mundil, R., & Chemale, F. (2016). The precise temporal calibration of dinosaur origins. Proceedings of the National Academy of Sciences of the United States of America, 113, 509–513.

    Google Scholar 

  • Martinez, R. N., Sereno, P. C., Alcober, O. A., Colombi, C. E., Renne, P. R., Montañez, I. P., & Currie, B. S. (2011). A basal dinosaur from the dawn of the Dinosaur Era in Southwestern Pangaea. Science, 331, 206–210.

    Google Scholar 

  • Merino, L. (2000). Mineralogía y geoquímica del esqueleto de mamíferos del Neógeno español. Consejo Superior de Investigaciones Científicas.

  • Merino, L., & Buscalioni, A. D. (2013). Mineralogía y cambios composicionales en fragmentos óseos atribuidos a un dinosaurio ornitópodo del yacimiento barremiense de Buenache de la Sierra (Formación Calizas de La Huérguina, Cuenca, España). Estudios Geológicos, 69, 193–207.

    Google Scholar 

  • Mutti, M., & Weissert, H. (1995). Triassic monsoonal climate and its signature in Ladinian- Carnian carbonate platforms (Southern Alps, Italy). Journal of Sedimentary Research, 65, 357–367.

    Google Scholar 

  • Nucci, M., & Caselli, A. (2000). Análisis paleoambiental y petrográfico de la Formación Tarjados (Triasico Inferior) en el área comprendida entre los Ríos Talampaya y Chañares, Provincia de La Rioja (Argentina). Ameghiniana, 37, 42.

    Google Scholar 

  • Ottone, E.G, Monti, M., Marsicano, C.A., De La Fuente, M., Naipauer, M., Armstrong, R., & Mancuso, A.C. (2014). A new Late Triassic age for the Puesto Viejo Group (San Rafael depocenter, Argentina): SHRIMP U-Pb zircon dating and biostratigraphic correlations across southern Gondwana: Journal of South American Earth Sciences, 56, 186–199.

  • Parrish, J. T. (1993). Climate of the supercontinent Pangaea. The Journal of Geology, 101, 215–233.

    Google Scholar 

  • Pate, J. T., Hutton, J. T., & Norrish, K. (1989). Ionic exchange between soil solution and bone: toward a predictive model. Applied Geochemistry, 4, 303–316.

    Google Scholar 

  • Pereda-Suberbiola, X., Astibia, H., Murelaga, X., Elorza, J. J., & Gómez-Alday, J. J. (2000). Taphonomy of the Late Cretaceous dinosaur-bearing beds of the Laño Quarry (Iberian Peninsula). Palaeogeography Palaeoclimatology Palaeoecology, 157, 247–275.

    Google Scholar 

  • Pfretzschner, H. U. (2004). Fossilization of Haversian bone in aquatic environments. Comptes Rendus Palevol, 3, 605–616.

    Google Scholar 

  • Pfretzschner, H. U., & Tütken, T. (2011). Rolling bones – taphonomy of Jurassic dinosaur bones inferred from diagenetic microcracks and mineral infillings. Palaeogeography, Palaeoclimatology, Palaeoecology, 310, 117–123.

    Google Scholar 

  • Philipp, R. P., Schultz, C. L., Closs, H., Horn, L. D., Soares, M. B., & Basei, M. B. (2018). Middle Triassic southern Gondwana paleogeography and sedimentary dispersal revealed by integration of stratigraphy and U-Pb zircon analysis: The Santa Cruz Sequence, Paraná Basin, Brazil. Journal of South American Earth Sciences, 88, 216–237.

    Google Scholar 

  • Preto, N., Kustatscher, E., & Wignall, P. E. (2010). Triassic climates d State of the art and perspectives. Palaeogeography, Palaeoclimatology, Palaeoecology, 290, 1–10.

    Google Scholar 

  • Previtera, E., Mancuso, A. C., de la Fuente, M. S., & Sánchez, E. S. (2016). Diagenetic analysis of tetrapod from the Upper Triassic, Puesto Viejo Group, Argentina. Andean Geology, 43, 197–214.

    Google Scholar 

  • Retallack, G. J. (2001). Soils of the past: an introduction to paleopedology. Blackwell Science.

  • Rogers, R. R., Hartman, J. H., & Krause, D. W. (2000). Stratigraphic analysis of Upper Cretaceous rocks in the Mahajanga Basin, northwestern Madagascar: implications for ancient and modern faunas. The Journal of Geology, 108, 275301.

    Google Scholar 

  • Rogers, R. R., Kidwell, S. M., Deino, A. L., Mitchell, J. P., Nelson, K., & Thole, J. T. (2016). Age, correlation, and lithostratigraphic revision of the Upper Cretaceous (Campanian) Judith River Formation in its type area (North-Central Montana), with a comparison of low- and high-accommodation alluvial records. The Journal of Geology, 124, 99–135.

    Google Scholar 

  • Rogers, R. R., Regan, A. K., Weaver, L. N., Thole, J. T., & Fricke, H. C. (2020). Tracking authigenic mineral cements in fossil bones from the Upper Cretaceous (Campanian) Two Medicine and Judith River formations, Montana. Palaios, 35, 135–150.

    Google Scholar 

  • Romer, A., & Jensen, J. (1966). The Chañares (Argentina) Triassic reptile fauna. II. Sketch of the geology of the Rio Chañares, Rio Gualo region. Breviora, 252, 1–20.

    Google Scholar 

  • Scasso, R. A., & Limarino, C. O. (1997). Petrología y diagénesis de rocas clásticas: Asociación Argentina de Sedimentología. Publicación Especial, 1.

  • Sellwood, B. W., & Valdes, P. J. (2006). Mesozoic climates: general circulation models and the rock Record. Sedimentary Geology, 190, 269–287.

    Google Scholar 

  • Smith, E. L., Hill, R. L., Lehman, I. R., Lefkowitz, R. J., Handler, P., & White, A. (1983). Principles of Biochemistry, Mammalian Biochemistry 7th edition. McGraw-Hill Book Company.

  • Stipanicic, P. N. (2002). Introducción. In P.N Stipanicic, & Marsicano, C.A. (Eds.), Léxico Estratigráfico de la Argentina: Triásico: Asociación Geológica Argentina (pp. 1–24). Serie B (Didáctica y Complementaria) 26.

  • Stipanicic, P. N., & Bonaparte, J. (1979). Cuenca triásica de Ischigualasto-Villa Unión (Provincia de La Rioja y San Juan). Geología Regional Argentina, Academia Nacional de Ciencias, Córdoba, 1, 523–575.

    Google Scholar 

  • Trueman, C. N., & Benton, M. J. (1997). A geochemical method to trace the taphonomic history of reworked bones in sedimentary settings. Geology, 27, 263–265.

    Google Scholar 

  • Trueman, C. N. G., Behrensmeyer, A. K., Tuross, N., & Weiner, S. (2004). Mineralogical and compositional changes in bones exposed on soil surfaces in Ambosely National Park, Kenya: diagenetic mechanism and the role of sediment pore fluids. Journal of Archaeological Science, 31, 721–739.

    Google Scholar 

  • Tucker, M. E. (1991). The diagenesis of fossils. In S. K. Donovan (Ed.), The processes of fossilization (pp. 84–104). Columbia University Press.

  • Tuross, N., Behrensmeyer, A. K., Eanes, E. D., Fisher, L. W., & Hare, P. E. (1989). Molecular preservation and crystallographic alterations in a weathering sequence of wildebeest bones. Applied Geochemistry, 4, 261–270.

    Google Scholar 

  • Wings, O. (2004). Authigenic minerals in fossil bones from the Mesozoic of England: poor correlation with depositional environments. Palaeogeography, Palaeoclimatology, Palaeoecology, 204, 15–32.

    Google Scholar 

Download references

Acknowledgements

The authors thank R. M. H. Smith and an anonymous reviewer for the help that improved the quality of the manuscript. We thank M. Bourguet (IANIGLA-CONICET), R. Irmis (University Utah), L. Gaetano (UBA-CONICET), and J. M. Leardi (UBA-CONICET) for their support during fieldwork. For access permission, we thank Verónica Vargas, Laura Gachón and Ana Mercado Luna (Dirección de Patrimonio Arqueológico y Paleontológico, Secretaría de Cultura de La Rioja) and the Administración de Parques Nacionales. We are deeply indebted to the staff of Parque Nacional Talampaya for their constant assistance in the field.

Funding

Field and laboratory research was supported by the PIP CONICET 11420090100209/10 and PICT 2013-0805 (ACM). Additional financial support was provided by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Cecilia Mancuso.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 8018 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mancuso, A.C., Previtera, E. Bone diagenesis of tetrapods from the Middle Triassic Tarjados Formation: implication for depositional environment and palaeoclimate. Palaeobio Palaeoenv 102, 205–221 (2022). https://doi.org/10.1007/s12549-021-00500-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12549-021-00500-4

Keywords

Navigation