Skip to main content

Advertisement

Log in

A review on interplay between small RNAs and oxidative stress in cancer progression

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Oxidative stress has been known to be the underlying cause in many instances of cancer development. The new aspect of cancer genesis that has caught the attention of many researchers worldwide is its connection to non-coding RNAs (ncRNAs). ncRNAs may not be protein coding, but in light of the more recent discovery of their wide range of functions, the term ‘dark matter of the genome’ has been rendered inapplicable. There is an extensive mention of colon cancer as an example, where some of these ncRNAs and their manipulations have seen significant progress. As of now, the focus is on discovering a non-invasive, cost-effective method for diagnosis that is easier to monitor and can be conducted before visible symptoms indicate cancer in a patient, by which time it may already be too late. The concept of liquid biopsies has revolutionized recent diagnostic measures. It has been possible to detect circulating parts of the cancer genome or other biomarkers in the patients’ bodily fluids, resulting in the effective management of the disease. This has led these ncRNAs to be considered effective therapeutic targets and extrinsic modifications in several tumor types, proven to be effective as therapy. However, there is a vast scope for further understanding and pertinent application of our acquired knowledge and expanding it in enhancing the utilization of ncRNAs for a better prognosis, quicker diagnosis, and improved management of cancer. This review explores the prognosis of cancer and related mutations by scrutinizing small ncRNAs in the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Li X, Fang P, Mai J, Choi ET, Wang H, Yang XF (2013) Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol 1:19

    Article  CAS  Google Scholar 

  2. Spitz DR, Sim JE, Ridnour LA, Galoforo SS, Lee YJ (2000) Glucose deprivation-induced oxidative stress in human tumor cells: a fundamental defect in metabolism? Ann NY Acad Sci 1:349–362

    Google Scholar 

  3. Halliwell B (2007) Oxidative stress and cancer: have we moved forward? Biochem J 1:1–1

    Article  CAS  Google Scholar 

  4. Wang J, Yi J (2008) Cancer cell killing via ROS: to increase or decrease that is the question. Cancer Biol Ther 12:1875–1884

    Article  Google Scholar 

  5. Okon IS, Zou MH (2015) Mitochondrial ROS and cancer drug resistance: implications for therapy. Pharmacol Res 100:170–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhou L, Zhang Z, Huang Z, Nice E, Zou B, Huang C (2020) Revisiting cancer hallmarks: insights from the interplay between oxidative stress and non-coding RNAs. Mol Biomed 1:1–24

    Article  Google Scholar 

  7. Cook JA, Gius D, Wink DA, Krishna MC, Russo A, Mitchell JB (2004) Oxidative stress, redox, and tumor microenvironment. Semin Radiat Oncol 3:259–266

    Article  Google Scholar 

  8. Pani G, Galeotti T, Chiarugi P (2010) Metastasis: cancer cell’s escape from oxidative stress. Cancer Metastasis Rev 2:351–378

    Article  CAS  Google Scholar 

  9. Slimen BI, Najar T, Ghram A, Dabbebi H, Ben Mrad M, Abdrabbah M (2014) Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review. Int J Hyperther 7:513–523

    Article  CAS  Google Scholar 

  10. Bartsch H, Nair J (2006) Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer include lipid peroxidation, DNA damage, and repair. Langenbeck’s Arch Surg 5:499–510

    Article  Google Scholar 

  11. Sies H (2014) Role of metabolic H2O2 generation redox signaling and oxidative stress. J Biol Chem 13:8735–8741

    Article  CAS  Google Scholar 

  12. Meader S, Ponting CP, Lunter G (2010) Massive turnover of functional sequence in human and other mammalian genomes. Genome Res 10:1335–1343

    Article  CAS  Google Scholar 

  13. Jarroux J, Morillon A, Pinskaya M (2017) History, discovery, and classification of lncRNAs. In long non-coding RNA biology. Springer, Singapore

    Google Scholar 

  14. Lakhotia SC, Mallick B, Roy J (2020) Non-coding RNAs: ever-expanding diversity of types and functions. In Translational epigenetics, Rna-based regulation in human health and disease. Academic Press 19:5–57

  15. O’Brien J, Hayder H, Zayed Y, Peng C (2018) Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol 9:402

    Article  CAS  Google Scholar 

  16. Markopoulos GS, Roupakia E, Tokamani M, Chavdoula E, Hatziapostolou M, Polytarchou C, Marcu KB, Papavassiliou AG, Sandaltzopoulos R, Kolettas E (2017) A step-by-step microRNA guide to cancer development and metastasis. Cell Oncol 4:303–339

    Article  CAS  Google Scholar 

  17. Paliouras AR, Monteverde T, Garofalo M (2018) Oncogene-induced regulation of microRNA expression: implications for cancer initiation, progression and therapy. Cancer Lett 421:152–160

    Article  CAS  PubMed  Google Scholar 

  18. Gu S, Kay MA (2010) How do miRNAs mediate translational repression? Silence 1:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Ying SY, Chang DC, Lin SL (2008) The microRNA (miRNA): overview of the RNA genes that modulate gene function. Mol Biotechnol 3:257–268

    Article  CAS  Google Scholar 

  20. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 2:102–114

    Article  CAS  Google Scholar 

  21. Shukla GC, Singh J, Barik S (2011) MicroRNAs: processing, maturation, target recognition and regulatory functions. Mol Cell Pharmacol 3:83

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kato M, Slack FJ (2008) microRNAs: small molecules with significant roles–C. elegans to human cancer. Biol Cell 2:71–81

    Article  Google Scholar 

  23. Moyano M, Stefani G (2015) piRNA involvement in genome stability and human cancer. J Hematol Oncol 1:38

    Article  CAS  Google Scholar 

  24. Du Z, Fei T, Verhaak RG, Su Z, Zhang Y, Brown M, Chen Y, Liu XS (2013) Integrative genomic analyses reveal clinically relevant long non-coding RNAs in human cancer. Nat Struct Mol Biol 7:908

    Article  CAS  Google Scholar 

  25. Corrêa RL, Steiner FA, Berezikov E, Ketting RF (2010) MicroRNA–directed siRNA biogenesis in Caenorhabditis elegans. PLoS Genet 4:1000903

    Article  CAS  Google Scholar 

  26. Tabak S, Schreiber-Avissar S, Beit-Yannai E (2021) Crosstalk between MicroRNA and oxidative stress in primary open-angle glaucoma. Int J Mol Sci 5:2421

    Article  CAS  Google Scholar 

  27. Milhavet O, Gary DS, Mattson MP (2003) RNA interference in biology and medicine. Pharmacol Rev 4:629–648

    Article  CAS  Google Scholar 

  28. Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 5:515–524

    Article  CAS  Google Scholar 

  29. Shin HJ, Park H, Shin N, Kwon HH, Yin Y, Hwang JA, Kim SI, Kim SR, Kim S, Joo Y, Kim Y (2020) p47phox siRNA-Loaded PLGA nanoparticles suppress ROS/oxidative stress-induced chondrocyte damage in osteoarthritis. Polymers 2:443

    Article  CAS  Google Scholar 

  30. Cheng Y, Wang Q, Jiang W, Bian Y (2019) Emerging roles of piRNAs in cancer: challenges and prospects. Aging (Albany NY) 21:9932

    Article  Google Scholar 

  31. Mei Y, Clark D, Mao L (2013) Novel dimensions of piRNAs in cancer. Cancer Lett 1:46–52

    Article  CAS  Google Scholar 

  32. Liu J, Zhang S, Cheng B (2018) Epigenetic roles of PIWI-interacting RNAs (piRNAs) in cancer metastasis. Oncol Rep 5:2423–2434

    Google Scholar 

  33. Gong J, Li Y, Liu CJ, Xiang Y, Li C, Ye Y, Zhang Z, Hawke DH, Park PK, Diao L, Putkey JA (2017) A pan-cancer analysis of the expression and clinical relevance of small nucleolar RNAs in human cancer. Cell Rep 7:1968–1981

    Article  CAS  Google Scholar 

  34. Chu L, Su MY, Maggi LB, Lu L, Mullins C, Crosby S, Huang G, Chng WJ, Vij R, Tomasson MH (2012) Multiple myeloma–associated chromosomal translocation activates orphan snoRNA ACA11 to suppress oxidative stress. J Clin Investig 8:2793–2806

    Article  CAS  Google Scholar 

  35. Michel CI, Holley CL, Scruggs BS, Sidhu R, Brookheart RT, Listenberger LL, Behlke MA, Ory DS, Schaffer JE (2011) Small nucleolar RNAs U32a, U33, and U35a are critical mediators of metabolic stress. Cell Metab 1:33–44

    Article  CAS  Google Scholar 

  36. Krell J, Frampton AE, Mirnezami R, Harding V, De Giorgio A, Alonso LR, Cohen P, Ottaviani S, Colombo T, Jacob J, Pellegrino L (2014) Growth arrest-specific transcript 5 associated snoRNA levels are related to p53 expression and DNA damage in colorectal cancer. PLoS ONE 6:e98561

    Article  CAS  Google Scholar 

  37. Wei N, Shi Y, Truong LN, Fisch KM, Xu T, Gardiner E, Fu G, Hsu YS, Kishi S, Su AI, Wu X (2014) Oxidative stress diverts tRNA synthetase to nucleus for protection against DNA damage. Mol Cell 2:323–332

    Article  CAS  Google Scholar 

  38. Huang SQ, Sun B, Xiong ZP, Shu Y, Zhou HH, Zhang W, Xiong J, Li Q (2018) The dysregulation of tRNAs and tRNA derivatives in cancer. J Exp Clin Cancer Res 1:101

    Article  CAS  Google Scholar 

  39. Martens-Uzunova ES, Olvedy M, Jenster G (2013) Beyond microRNA–novel RNAs derived from small non-coding RNA and their implication in cancer. Cancer Lett 2:201–211

    Article  CAS  Google Scholar 

  40. Levenson VV (2010) DNA methylation as a universal biomarker. Expert Rev Mol Diagn 4:481–488

    Article  Google Scholar 

  41. Farazi TA, Spitzer JI, Morozov P, Tuschl T (2011) miRNAs in human cancer. J Pathol 2:102–115

    Article  CAS  Google Scholar 

  42. Zhang B, Tian L, Xie J, Chen G, Wang F (2020) Targeting miRNAs by natural products: a new way for cancer therapy. Biomed Pharmacother 130:110546

    Article  CAS  PubMed  Google Scholar 

  43. Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szász AM, Wang ZC, Brock JE, Richardson AL, Weinberg RA (2009) A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137(6):1032–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dong XY, Rodriguez C, Guo P, Sun X, Talbot JT, Zhou W, Petros J, Li Q, Vessella RL, Kibel AS, Stevens VL (2008) SnoRNA U50 is a candidate tumor-suppressor gene at 6q14. 3 with a mutation associated with clinically significant prostate cancer. Human Mol Genet 7:1031–1042

    Google Scholar 

  45. Gao SM, Xing CY, Chen CQ, Lin SS, Dong PH, Yu FJ (2011) miR-15a and miR-16-1 inhibit the proliferation of leukemic cells by down-regulating WT1 protein level. J Exp Clin Cancer Res 1:1–9

    Google Scholar 

  46. Chalbatani GM, Dana H, Memari F, Gharagozlou E, Ashjaei S, Kheirandish P, Marmari V, Mahmoudzadeh H, Mozayani F, Maleki AR, Sadeghian E (2019) Biological function and molecular mechanism of piRNA in cancer. Pract Lab Med. 13:e00113

    Article  PubMed  Google Scholar 

  47. Li PF, Chen SC, Xia T, Jiang XM, Shao YF, Xiao BX, Guo JM (2014) Non-coding RNAs and gastric cancer. World J Gastroenterol Hepatol Endosc 18:5411

    Google Scholar 

  48. Li Y, Wu X, Gao H, Jin JM, Li AX, Kim YS, Pal SK, Nelson RA, Lau CM, Guo C, Mu B (2015) Piwi-interacting RNAs (piRNAs) are dysregulated in renal cell carcinoma and associated with tumor metastasis and cancer-specific survival. Mol Med 1:381–388

    Article  CAS  Google Scholar 

  49. Zimta AA, Tigu AB, Braicu C, Stefan C, Ionescu C, Berindan-Neagoe I (2020) An emerging class of long non-coding RNA with oncogenic role arises from the snoRNA host genes. Front oncol 10:389

    Article  PubMed  PubMed Central  Google Scholar 

  50. Appaiah HN, Goswami CP, Mina LA, Badve S, Sledge GW, Liu Y, Nakshatri H (2011) Persistent upregulation of U6: SNORD44 small RNA ratio in the serum of breast cancer patients. Breast Cancer Res 5:1

    Google Scholar 

  51. Martens-Uzunova ES, Hoogstrate Y, Kalsbeek A, Pigmans B, Vredenbregt-van den Berg M, Dits N, Nielsen SJ, Baker A, Visakorpi T, Bangma C, Jenster G (2015) C/D-box snoRNA-derived RNA production is associated with malignant transformation and metastatic progression in prostate cancer. Oncotarget 19:17430

    Article  Google Scholar 

  52. Mei YP, Liao JP, Shen J, Yu L, Liu BL, Liu L, Li RY, Ji L, Dorsey SG, Jiang ZR, Katz RL (2012) Small nucleolar RNA 42 acts as an oncogene in lung tumorigenesis. Oncogene 22:2794–2804

    Article  CAS  Google Scholar 

  53. Yang B, Dai JX, Pan YB, Ma YB, Chu SH (2019) Identification of biomarkers and construction of a microRNA-mRNA regulatory network for ependymoma using integrated bioinformatics analysis. Oncol Lett 6:6079–6089

    Google Scholar 

  54. Ferreira HJ, Heyn H, Moutinho C, Esteller M (2012) CpG island hypermethylation-associated silencing of small nucleolar RNAs in human cancer. RNA Biol 6:881–890

    Article  CAS  Google Scholar 

  55. Kushwaha PP, Gupta S, Singh AK, Prajapati KS, Shuaib M, Kumar S (2020) MicroRNA targeting nicotinamide adenine dinucleotide phosphate oxidases in cancer. Antioxid Redox Signal 5:267–284

    Article  CAS  Google Scholar 

  56. Zhang C, Shu L, Kong AN (2015) MicroRNAs: new players in cancer prevention targeting Nrf2, oxidative stress and inflammatory pathways. Curr Pharmacol Rep 1:21–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cheng X, Ku CH, Siow RC (2013) Regulation of the Nrf2 antioxidant pathway by microRNAs: new players in micromanaging redox homeostasis. Free Radic Biol Med 64:4–11

    Article  CAS  PubMed  Google Scholar 

  58. Zimta AA, Cenariu D, Irimie A, Magdo L, Nabavi SM, Atanasov AG, Berindan-Neagoe I (2019) The role of Nrf2 activity in cancer development and progression. Cancers 11:1755

    Article  CAS  PubMed Central  Google Scholar 

  59. He X, Tan X, Wang X, Jin H, Liu L, Ma L, Yu H, Fan Z (2014) C-Myc-activated long non-coding RNA CCAT1 promotes colon cancer cell proliferation and invasion. Tumor Biol 12:12181–12188

    Article  CAS  Google Scholar 

  60. Wu ZH, Wang XL, Tang HM, Jiang T, Chen J, Lu S, Qiu GQ, Peng ZH, Yan DW (2014) Long non-coding RNA HOTAIR is a powerful predictor of metastasis and poor prognosis and is associated with epithelial-mesenchymal transition in colon cancer. Oncol Rep 1:395–402

    Article  CAS  Google Scholar 

  61. Nakajima G, Hayashi K, Xi Y, Kudo K, Uchida K, Takasaki K, Yamamoto M, Ju J (2006) Non-coding microRNAs hsa-let-7g and hsa-miR-181b are associated with chemoresponse to S-1 in colon cancer. Cancer Genom Proteom 5:317–324

    Google Scholar 

  62. Evert J, Pathak S, Sun XF, Zhang H (2018) A study on the effect of oxaliplatin in MicroRNA expression in human colon cancer. J Cancer 11:2046

    Article  CAS  Google Scholar 

  63. Pathak S, Wen-Jian M, Suman KN, Jie P, Atil B, Linda H, Patrik W, Xiao-Feng S (2015) Radiation and SN38 treatments modulate the expression of microRNAs, cytokines and chemokines in colon cancer cells in a p53-directed manner. Oncotarget 6:44758

    Article  PubMed  PubMed Central  Google Scholar 

  64. Banerjee A, Pathak S, Subramanium VD, Dharanivasan G, Murugesan R, Verma RS (2017) Strategies for targeted drug delivery in treatment of colon cancer: current trends and future perspectives. Drug Discov Today 8:1224–1232

    Article  CAS  Google Scholar 

  65. Rachel K, Pathak S, Moorthi A, Narasimhan S, Murugesan R, Narayan S (2020) 5-Azacytidine incorporated polycaprolactone-gelatin nanoscaffold as a potential material for cardiomyocyte differentiation. J Biomater Sci Polym Ed 1:123–140

    Article  CAS  Google Scholar 

  66. Song H, He P, Shao T, Li Y, Li J, Zhang Y (2017) Long non-coding RNA XIST functions as an oncogene in human colorectal cancer by targeting miR-132-3p. JBUON 3:696–703

    Google Scholar 

  67. Sun N, Zhang G, Liu Y (2018) Long non-coding RNA XIST sponges miR-34a to promotes colon cancer progression via Wnt/β-catenin signaling pathway. Gene 665:141–148

    Article  CAS  PubMed  Google Scholar 

  68. Yoshimoto R, Mayeda A, Yoshida M, Nakagawa S (2016) MALAT1 long non-coding RNA in cancer. Biochim Biophys Acta Gene Regul Mech 1:192–199

    Article  CAS  Google Scholar 

  69. Chen H, Xu Z, Liu D (2019) Small non-coding RNA and colorectal cancer. J Cell Mol Med 5:3050–3057

    Article  Google Scholar 

  70. Krishnan P, Damaraju S (2018) The challenges and opportunities in the clinical application of non-coding RNAs: the road map for miRNAs and piRNAs in cancer diagnostics and prognostics. Int J Genomics 15:5848046

    Google Scholar 

  71. Cui L, Lou Y, Zhang X, Zhou H, Deng H, Song H, Yu X, Xiao B, Wang W, Guo J (2011) Detection of circulating tumor cells in peripheral blood from patients with gastric cancer using piRNAs as markers. Clin Biochem 13:1050–1057

    Article  CAS  Google Scholar 

  72. Gerber DE (2008) Targeted therapies: a new generation of cancer treatments. Am Fam Phys 3:311–319

    Google Scholar 

  73. Manley PW, Cowan-Jacob SW, Mestan J (2005) Advances in the structural biology, design, and clinical development of Bcr-Abl kinase inhibitors to treat chronic myeloid leukemia. Biochim Biophys Acta Proteins Proteom 1–2:3–13

    Article  CAS  Google Scholar 

  74. Afghahi A, Sledge GW Jr (2015) Targeted therapy for cancer in the genomic era. Cancer J 4:294–298

    Article  CAS  Google Scholar 

  75. Ross JS, Schenkein DP, Pietrusko R, Rolfe M, Linette GP, Stec J, Stagliano NE, Ginsburg GS, Symmans WF, Pusztai L, Hortobagyi GN (2004) Targeted therapies for cancer 2004. Am J Clin Pathol 4:598–609

    Article  CAS  Google Scholar 

  76. Arora A, Scholar EM (2005) Role of tyrosine kinase inhibitors in cancer therapy. J Pharmacol Exp Ther 3:971–979

    Article  CAS  Google Scholar 

  77. Lee H, Kim C, Ku JL, Kim W, Yoon SK, Kuh HJ, Lee JH, Nam SW, Lee EK (2014) A long non-coding RNA snaR contributes to 5-fluorouracil resistance in human colon cancer cells. Mol Cell 7:540

    Article  CAS  Google Scholar 

  78. Pathak S, Sriramulu S, Banerjee A, Marotta F, Gopinath M, Murugesan R, Zhang H (2018) Review on comparative efficacy of bevacizumab, panitumumab and cetuximab antibody therapy with combination of FOLFOX-4 in KRAS-mutated colorectal cancer patients. Oncotarget 9:7739

    Article  PubMed  Google Scholar 

  79. Cho WC (2007) Contribution of oncoproteomics to cancer biomarker discovery. Mol Cancer 1:1–3

    Article  CAS  Google Scholar 

  80. Stevenson M (2004) Therapeutic potential of RNA interference. N Engl J Med 17:1772–1777

    Article  Google Scholar 

  81. Zhou M, Hu L, Zhang Z, Wu N, Sun J, Su J (2018) Recurrence-associated long non-coding RNA signature for determining the risk of recurrence in patients with colon cancer. Mol Ther Nucleic Acids 12:518–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A (2013) Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol 8:472

    Article  CAS  Google Scholar 

  83. Palmirotta R, Lovero D, Cafforio P, Felici C, Mannavola F, Pellè E, Quaresmini D, Tucci M, Silvestris F (2018) Liquid biopsy of cancer: a multimodal diagnostic tool in clinical oncology. Ther Adv Med Oncol 10:1758835918794630

    Article  PubMed  PubMed Central  Google Scholar 

  84. Romano G, Veneziano D, Acunzo M, Croce CM (2017) Small non-coding RNA and cancer. Carcinogenesis 5:485–491

    Article  CAS  Google Scholar 

  85. Lianidou E, Hoon D (2018) Circulating tumor cells and circulating tumor DNA. In Principles and applications of molecular diagnostics. Elsevier 235–281

  86. Alix-Panabières C, Pantel K (2013) Circulating tumor cells: liquid biopsy of cancer. Clin Chem 1:110–118

    Article  CAS  Google Scholar 

  87. Ono S, Lam S, Nagahara M, Hoon DS (2015) Circulating microRNA biomarkers as liquid biopsy for cancer patients: pros and cons of current assays. J Clin Med 10:1890–1907

    Article  CAS  Google Scholar 

  88. Cree IA (2015) Liquid biopsy for cancer patients: principles and practice. In Pathogenesis 2(1–2):1–4

  89. Brock G, Castellanos-Rizaldos E, Hu L, Coticchia C, Skog J (2015) Liquid biopsy for cancer screening, patient stratification, and monitoring. Transl Cancer Res 3:280–290

    Google Scholar 

  90. Li SC, Tachiki LM, Kabeer MH, Dethlefs BA, Anthony MJ, Loudon WG (2014) Cancer genomic research at the crossroads: realizing the changing genetic landscape as intratumoral spatial and temporal heterogeneity becomes a confounding factor. Cancer Cell Int 1:115

    Article  CAS  Google Scholar 

  91. Yarmarkovich M, Hirschi KD (2015) Digesting dietary miRNA therapeutics. Oncotarget 6:13848

    Article  PubMed  PubMed Central  Google Scholar 

  92. Fadaka AO, Ojo BA, Adewale OB, Esho T, Pretorius A (2018) Effect of dietary components on miRNA and colorectal carcinogenesis. Cancer Cell Int 1:130

    Article  CAS  Google Scholar 

  93. Goossens N, Nakagawa S, Sun X, Hoshida Y (2015) Cancer biomarker discovery and validation. Transl Cancer Res 3:256

    Google Scholar 

  94. Lin J, Welker NC, Zhao Z, Li Y, Zhang J, Reuss SA, Zhang X, Lee H, Liu Y, Bronner MP (2014) Novel specific microRNA biomarkers in idiopathic inflammatory bowel disease unrelated to disease activity. Mod Pathol 4:602–608

    Article  CAS  Google Scholar 

  95. Liu CJ, Kao SY, Tu HF, Tsai MM, Chang KW, Lin SC (2010) Increase of microRNA miR-31 level in plasma could be a potential marker of oral cancer. Oral Dis 4:360–364

    Article  Google Scholar 

  96. Tang W, Li GS, Li JD, Pan WY, Shi Q, Xiong DD, Mo CH, Zeng JJ, Chen G, Feng ZB, Huang SN (2020) The role of upregulated miR-375 expression in breast cancer: An in vitro and in silico study. Pathol Res Pract 1:152754

    Article  CAS  Google Scholar 

  97. Zheng TZ, Li YT, Li WJ (2020) LncRNA AK024094 aggravates the progression of breast cancer through regulating miRNA-181a. Eur Rev Med Pharmacol Sci 4:1913–1921

    Google Scholar 

  98. Li X (2014) MiR-375, a microRNA related to diabetes. Gene 1:1–4

    Article  CAS  Google Scholar 

  99. Yang J, Farmer LM, Agyekum AA, Hirschi KD (2015) Detection of dietary plant-based small RNAs in animals. Cell Res 4:517–520

    Article  CAS  Google Scholar 

  100. Latysheva NS, Babu MM (2019) Molecular signatures of fusion proteins in cancer. ACS Pharmacol Transl Sci 2:122–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Persson H, Søkilde R, Häkkinen J, Pirona AC, Vallon-Christersson J, Kvist A, Mertens F, Borg Å, Mitelman F, Höglund M, Rovira C (2017) Frequent miRNA-convergent fusion gene events in breast cancer. Nat Commun 1:1–12

    Google Scholar 

  102. Meldrum C, Doyle MA, Tothill RW (2011) Next-generation sequencing for cancer diagnostics: a practical perspective. Clin Biochem Rev 4:177

    Google Scholar 

  103. Di Leva G, Croce CM (2010) Roles of small RNAs in tumor formation. Trends Mol Med 6:257–267

    Article  CAS  Google Scholar 

  104. Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, Chang TC, Vivekanandan P, Torbenson M, Clark KR, Mendell JR, Mendell JT (2009) Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137(6):1005–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D, Teruya-Feldstein J, Reinhardt F, Onder TT, Valastyan S, Westermann F, Speleman F, Vandesompele J, Weinberg RA (2010) miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 12(3):247–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Brown BD, Naldini L (2009) Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications. Nat Rev Genet 10(8):578–585

    Article  CAS  PubMed  Google Scholar 

  107. Huang X, Zhu X, Yu Y, Zhu W, Jin L, Zhang X, Li S, Zou P, Xie C, Cui R (2021) Dissecting miRNA signature in colorectal cancer progression and metastasis. Cancer Lett 501:66–82

    Article  CAS  PubMed  Google Scholar 

  108. Yaghoubi N, ZahediAvval F, Khazaei M, Aghaee-Bakhtiari SH (2021) MicroRNAs as potential investigative and predictive biomarkers in colorectal cancer. Cell Signal 80:109910

    Article  CAS  PubMed  Google Scholar 

  109. Huang Z, Xu Y, Wan M, Zeng X, Wu J (2021) miR-340: A multifunctional role in human malignant diseases. Int J Biol Sci 17(1):236–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Malayaperumal S, Sriramulu S, Banerjee A, Pathak S (2020) Over-expression of MicroRNA-122 inhibits proliferation and induces apoptosis in colon cancer cells. Microrna 9(5):354–362

    Article  CAS  PubMed  Google Scholar 

  111. Zhao H, Yi B, Liang Z, Phillips C, Lin HY, Riker AI, Xi Y (2020) Cyclin G2, a novel target of sulindac to inhibit cell cycle progression in colorectal cancer. Genes Dis 8(3):320–330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Zhang N, Hu X, Du Y, Du J (2021) The role of miRNAs in colorectal cancer progression and chemoradiotherapy. Biomed Pharmacother 134:111099

    Article  CAS  PubMed  Google Scholar 

  113. Peruhova M, Peshevska-Sekulovska M, Krastev B, Panayotova G, Georgieva V, Konakchieva R, Nikolaev G, Velikova TV (2020) What could microRNA expression tell us more about colorectal serrated pathway carcinogenesis? World J Gastroenterol 26(42):6556–6571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ruiz GP, Camara H, Fazolini NPB, Mori MA (2021) Extracellular miRNAs in redox signaling: health, disease and potential therapies. Free Radic Biol Med S0891–5849(21):00285–00289

    Google Scholar 

  115. Malayaperumal S, Sriramulu S, Jothimani G, Banerjee A, Pathak S (2021) A review on AEG-1 oncogene regulating MicroRNA expression in colon cancer progression. Endocr Metab Immune Disorders Drug Targets 21(1):27-34

Download references

Acknowledgements

We would like to thank Chettinad Academy of Research and Education for providing us the facilities to carry out the research work.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Writing (Original draft preparation)—AD and SP; Editing and Improving scientific outcomes—HG, SS, FM, RKN, FH, AKD, and AB. All authors revised and approved the content of the manuscript.

Corresponding author

Correspondence to Surajit Pathak.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Ganesan, H., Sriramulu, S. et al. A review on interplay between small RNAs and oxidative stress in cancer progression. Mol Cell Biochem 476, 4117–4131 (2021). https://doi.org/10.1007/s11010-021-04228-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04228-9

Keywords

Navigation