Skip to main content
Log in

A Progressive Oxidative Damage Model of C/SiC Composites under Stressed Oxidation Environments

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

A progressive oxidative damage model of C/SiC composites, which is based on the oxidation mechanism and mechanical model of C/SiC composites, is presented to simulate the damage process of C/SiC composite under stressed oxidation environments. Firstly, the oxidation failure time of fibers was calculated according to the fiber stress and the fiber strength decline rule under stressed oxidation environments. Secondly, the stress redistribution and crack propagation around fracture fibers were given by combining the fracture position of fibers with the mechanical model, and the crack propagation would cause more fibers to be oxidized. Thirdly, the progressive oxidative damage process of C/SiC composites under stressed oxidation environments was simulated by repeating the cyclic process of fiber oxidation fracture and crack propagation around the fracture fibers. Finally, through the progressive oxidative damage model, the stress-strain curves and fracture morphology of the unidirectional C/SiC composites after stressed oxidation were predicted. The simulation results were correlated well with the experimental results, in terms of stressed oxidation life, stress-strain curve and variation law of fracture morphology, which indicated the reliability of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Christin, F.: CMC Materials for Space and Aeronautical Applications[M]// Ceramic Matrix Composites: Fiber Reinforced Ceramics and their Applications. Wiley-VCH Verlag GmbH & Co, KGaA (2008)

    Google Scholar 

  2. Beyer, S., Schmidt, S., Peres, P., et al.: Advanced Ceramic Matrix Composite Materials for Current and Future Propulsion System Applications[C]//41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (2005)

  3. Naslain, R.R.: The design of the fiber-matrix interfacial zone in ceramic matrix composites[J]. Compos. Part A 29(9–10), 1145–1155 (1998)

    Article  Google Scholar 

  4. Pailler, F., Lamon, J.: Micromechanics based model of fatigue/oxidation for ceramic matrix composites[J]. Compos. Sci. Technol. 65(3/4), 369–374 (2005)

    Article  CAS  Google Scholar 

  5. Yin, X., Cheng, L., Zhang, L., et al.: Oxidation behavior of 3D C/SiC composites in two oxidizing environments[J]. Compos. Sci. Technol. 61(7), 977–980 (2001)

    Article  CAS  Google Scholar 

  6. Singhal, S.C.: Oxidation kinetics of hot-pressed silicon carbide[J]. J. Mater. Sci. 11(7), 1246–1253 (1976)

    Article  CAS  Google Scholar 

  7. Frety, N., Molins, R., Boussuge, M.: Oxidizing ageing effects on SiC-SiC composites[J]. J. Mater. Sci. 27(18), 5084–5090 (1992)

    Article  CAS  Google Scholar 

  8. William, H., Glime, et al.: Stress Concentration Due to Fiber-Matrix Fusion in Ceramic-Matrix Composites[J]. J. Am. Ceram. Soc. 81(10), 2597–2604 (1998)

  9. Xu, Y., Zhang, P., Lu, H., et al.: Numerical modeling of oxidized C/SiC microcomposite in air oxidizing environments below 800℃: Microstructure and mechanical behavior[J]. J. Eur. Ceram. Soc. 35(13), 3401–3409 (2015)

    Article  CAS  Google Scholar 

  10. Heredia, F.E., Mcnulty, J.C., Zok, F.W., et al.: Oxidation Embrittlement Probe for Ceramic-Matrix Composites[J]. J. Am. Ceram. Soc. 78(8), 2097–2100 (1995)

    Article  CAS  Google Scholar 

  11. Yang, C.P., Jiao, G.Q.: Calculation model of oxidation residual strength of C / SiC Composite[J]. J. Mech. Strength (in Chinese) 01, 110–114 (2011)

    Google Scholar 

  12. Zhang, J., Luan, X., Cheng, L.: Damage evolution in 3D Cf/SiC composites in stressed oxidation environments. J. Chinese Ceram. Soc. 38(5), 799–804 (2010)

    CAS  Google Scholar 

  13. Halbig, M.C., Mcguffin-Cawley, J.D., Eckel, A.J., et al.: Oxidation Kinetics and Stress Effects for the Oxidation of Continuous Carbon Fibers within a Microcracked C/SiC Ceramic Matrix Composite[J]. J. Am. Ceram. Soc. 91(2), 519–526 (2008)

    Article  CAS  Google Scholar 

  14. Longbiao, L.: Time-dependent matrix fracture of carbon fiber-reinforced silicon carbide ceramic-matrix composites considering interface oxidation[J]. Compos. Inter. 27(6), 551–567 (2020)

    Article  CAS  Google Scholar 

  15. Longbiao, L.: Time-dependent proportional limit stress of carbon fiber-reinforced silicon carbide ceramic-matrix composites considering interface oxidation[J]. J. Ceram. Soc. Japan 127(5), 279–287 (2019)

    Article  Google Scholar 

  16. Li, L.: Modeling Multiple-Step Loading Damage Evolution in Continuous Fiber-Reinforced Ceramic-Matrix Composites at Room and Elevated Temperatures[J]. J. Aerosp. Eng. 32(1), 1–17 (2019)

    CAS  Google Scholar 

  17. Lara, Curzio E.: Analysis of oxidation-assisted stress-rupture of continuous fiber-reinforced ceramic matrix composites at intermediate temperatures[J]. Compos. Part A: Appl. Sci. Manuf. 30(4), 549–554 (1999)

    Article  Google Scholar 

  18. Sun, Z., Shao, H., Niu, X., et al.: Simulation of Mechanical Behaviors of Ceramic Composites Under Stress-Oxidation Environment While Considering the Effect of Matrix Cracks[J]. Appl. Compos. Mater. 23(3), 477–494 (2016)

    Article  CAS  Google Scholar 

  19. Zeng, Q.F., Cheng, L.F., Zhang, L.T., et al.: Fracture Behavior Simulation of 3D-C/SiC Under Stress and in Oxidation Environment[J]. Key Eng. Mater. 249(4), 339–342 (2003)

    Article  CAS  Google Scholar 

  20. Mei, H.: Modelling environmental effects on stress oxidation behaviour of carbon fibre reinforced ceramic matrix composites[J]. Adv. Appl. Ceram. 108(2), 123–127 (2009)

    Article  CAS  Google Scholar 

  21. Ochiai, S., Kumura, I., Tanaka, M., et al.: Influences of residual stresses, frictional shear stress at debonded interface and interactions among broken components on interfacial debonding in unidirectional multi-filamentary composites[J]. Compos. Inter. 5(4), 363–381 (1997)

    Article  Google Scholar 

  22. Aveston, J., Kelly, A.: Theory of multiple fracture of fibrous composites[J]. J. Mater. Sci. 8(3), 352–362 (1973)

    Article  CAS  Google Scholar 

  23. Weibull, W.: A statistical distribution of wide applicability[J]. J. Appl. Mech. 18(2), 293–297 (1951)

    Article  Google Scholar 

  24. Xu, Y., Zhang, P., Lu, H., et al.: Numerical modeling of oxidized C/SiC microcomposite in air oxidizing environments below 800°C: Microstructure and mechanical behavior[J]. J. Eur. Ceram. Soc. 35(13), 3401–3409 (2015)

    Article  CAS  Google Scholar 

  25. Lamouroux, F., Naslain, R., Jouin, J.M.: Kinetics and Mechanisms of Oxidation of 2D Woven C/SiC Composites: II, Theoretical Approach[J]. J. Am. Ceram. Soc. 77(8), 2058–2068 (2010)

    Article  Google Scholar 

  26. Deal, B.E., Grove, A.S.: General Relationship for the Thermal Oxidation of Silicon[J]. J. Appl. Phys. 36(12), 3770–3778 (1965)

    Article  CAS  Google Scholar 

  27. Niu, X.: Numerical simulation and application of tensile behavior of unidirectional C/SiC composites under biaxial load[D]. Nanjing University of Aeronautics and Astronautics (in Chinese) (2018)

  28. Ye, Y.: Simulation of carbon interface of C/SiC composite pyrolysis at atomic level [D]. Northwest Polytechnic University (in Chinese), (2003)

  29. Li, J.: Finite element simulation of C/SiC composite fiber ejection[D]. Tianjin University (in Chinese) (2014)

  30. Yan, Z.Q., Xiang, X., Peng, X., et al.: Oxidation Kinetics and Mechanism of C/SiC Composites Fabricated by MSI Process[J]. J. Inorg. Mater. 22(6), 1151–1158 (2007)

    CAS  Google Scholar 

  31. Filipuzzi, L., Naslain, R.: Oxidation Mechanisms and Kinetics of 1D-SiC/C/SiC Composite Materials: II, Modeling[J]. J. Am. Ceram. Soc. 77(2), 467–480 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China, the National Natural Science Foundation of China [grant number 51675266]; the Aeronautical Science Foundation of China [grant number 2014ZB52024]; the Postgraduate Research & Practice Innovation Program of Jiangsu Province [grant number KYCX18_0314]; the Foundation of graduate innovation base of Nanjing University of Aeronautics and Astronautics [grant number kfjj20190207 and kfjj20190206]; the Fundamental Research Funds for the Central Universities [grant numberNJ20160038]; and the Jiangsu Province Key Laboratory of Aerospace Power System [grant number CEPE2019004] are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Sun.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, J., Sun, Z., Chen, X. et al. A Progressive Oxidative Damage Model of C/SiC Composites under Stressed Oxidation Environments. Appl Compos Mater 28, 1609–1629 (2021). https://doi.org/10.1007/s10443-020-09849-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-020-09849-9

Keywords

Navigation