Skip to main content

Advertisement

Log in

Dynamical behavior of an epidemic model with fuzzy transmission and fuzzy treatment control

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we have considered an SIS epidemic model with arbitrary disease transmission function and arbitrary treatment control function. We have analyzed the model considering the disease transmission function as an increasing and decreasing function separately. To introduce heterogeneity in the system we have taken both the disease transmission function and treatment function as fuzzy numbers. Fuzzy expected value of the infected individual is defined and determined. Then fuzzy basic reproduction number is computed. At last, a threshold value is determined in both the cases where the system undergoes a transcritical and backward bifurcation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kar, T.K., Jana, S.: A theoretical study on mathematical modelling of an infectious disease with application of optimal control. BioSystems 111(1), 37–50 (2013)

    Article  Google Scholar 

  2. Zhang, X., Liu, X.: Bifurcation of an epidemic model with saturated treatment. J. Math. Anal. Appl. 348(1), 433–443 (2008)

    Article  MathSciNet  Google Scholar 

  3. Adak, S., Jana, S.: A study on stegomyia indices in dengue control: a fuzzy approach. Soft Comput. 25(1), 699–709 (2021)

    Article  Google Scholar 

  4. Jana, S., Haldar, P., Kar, T.K.: Optimal control and stability analysis of an epidemic model with population dispersal. Chaos Solitons Fractals 83, 67–81 (2016)

    Article  MathSciNet  Google Scholar 

  5. Kar, T.K., Jana, S.: Application of three controls optimally in vector borne disease- A mathematical study. Commun. Nonlinear Sci. Numer. Simul. 18(10), 2868–2884 (2013)

    Article  MathSciNet  Google Scholar 

  6. Wang, W., Ruan, S.: Bifurcations in an epidemic model with constant removal rate of the infectives. J. Math. Anal. Appl. 291(2), 433–444 (2004)

    Article  MathSciNet  Google Scholar 

  7. Kar, T.K., Mondal, P.K.: Global dynamics of a tuberculosis epidemic model and the influence of backward bifurcation. J. Math. Model. Algorithms 11(4), 433–459 (2012)

    Article  MathSciNet  Google Scholar 

  8. Cao, X., Jin, Z.: Epidemic threshold and ergodicity of an SIS model in switched networks. J. Math. Anal. Appl. 479(1), 1182–1194 (2018)

    Article  MathSciNet  Google Scholar 

  9. Murray, J.D.: Mathmatical Biology, 3rd edn. Springer, Berlin (2002)

    Book  Google Scholar 

  10. Kermack, W.O., McKendric, A.G.: Contribution to the mathematical theory of epidemics. Proc. R. Soc. London Series A 115(772), 700–721 (1927)

    Article  Google Scholar 

  11. Kar, T.K., Jana, S., Ghorai, A.: Effect of isolation in an infectious disease. Int. J. Ecol. Econ. Stat. 29(2), 87–106 (2013)

    Google Scholar 

  12. Arino, J., Cooke, K.L., Driessche, P., Valesco-Hernandez, J.: An epidemiology model that includes a leaky vaccine with a general waning function. J. Differ. Equ. 4(2), 479–495 (2004)

    MathSciNet  MATH  Google Scholar 

  13. Makinde, O.D.: A domain decomposition approach to a SIR epidemic model with constant vaccination strategy. Appl. Math. Comput. 184(2), 842–848 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Thomasey, D.H., Martcheva, M.: Serotype replacement of vertically transmitted disease through perfect vaccination. J. Biol. Syst. 16(2), 255–277 (2008)

    Article  Google Scholar 

  15. Gumel, A.B., Moghadas, S.M.: A qualitative study of vaccination model with nonlinear incidence. Appl. Math. Comput. 143(2–3), 409–419 (2003)

    MathSciNet  MATH  Google Scholar 

  16. Qiu, Z., Feng, Z.: Transmission dynamics of an influenza model with vaccination and antiviral treatment. Bull. Math. Biol. 72(1), 1–33 (2013)

    Article  MathSciNet  Google Scholar 

  17. Hu, Z., Ma, W., Ruan, S.: Analysis of SIR epidemic models with nonlinear incidence rate and treatment. Math. Biosci. 238(1), 12–20 (2012)

    Article  MathSciNet  Google Scholar 

  18. Zhou, L., Fan, M.: Dynamics of an SIR epidemic model with limited resources visited. Nonlinear Anal. Real World Appl. 13(1), 312–324 (2012)

    Article  MathSciNet  Google Scholar 

  19. Brauer, F.: Backward bifurcation in simple vaccination treatment models. J. Biol. Dyn. 5(5), 1–9 (2011)

    Article  MathSciNet  Google Scholar 

  20. Okosun, K., Ouifki, R., Marcus, N.: Optimal control analysis of a malaria disease transmission model that includes treatment and vaccination with waning immunity. Biosystems 106(2–3), 1–28 (2011)

    Google Scholar 

  21. Laarabi, H., Abta, A., Hattaf, K.: Optimal control of a delayed SIRS epidemic model with vaccination and treatment. Acta Biotheoretica 63(2), 87–97 (2015)

    Article  Google Scholar 

  22. Hethcote, H.W.: The mathematics of infectious disease. SIAM Rev. 42(4), 599–653 (2000)

    Article  MathSciNet  Google Scholar 

  23. Capasso, V., Serio, G.: A generalization of the Kermack-Mackendric deterministic epidemic model. Math. Biosci. 42(1–2), 43–61 (1978)

    Article  MathSciNet  Google Scholar 

  24. Ruan, S., Wang, W.: Dynamical behavior of an epidemic model with a nonlinear incidence rate. J. Differ. Equ. 188(1), 135–163 (2003)

    Article  MathSciNet  Google Scholar 

  25. Liu, W.M., Levin, S.A., Iwasa, Y.: Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models. J. Math. Biol. 23(2), 187–204 (1986)

    Article  MathSciNet  Google Scholar 

  26. Eckalbar, J.C., Eckalbar, W.L.: Dynamics of an epidemic model with quadratic treatment. Nonlinear Anal. Real World Appl. 12(1), 320–332 (2011)

    Article  MathSciNet  Google Scholar 

  27. Zhou, Y., Yang, K., Zhou, K., Liang, Y.: Optimal vaccination policies for an SIR model with limited resources. Acta Biotheoretica 62, 171–181 (2014)

    Article  Google Scholar 

  28. Zadeh, L.A.: Fuzzy sets as a basis for theory of possibility. Fuzzy Sets Syst. 1(1), 3–28 (1978)

    Article  MathSciNet  Google Scholar 

  29. Massad, E., Ortega, N.R.S., Barros, L.C.D., Struchiner, C.S.: Fuzzy Logic in Action: Application of Epidemiology and Beyond, 1st edn. Springer, Berlin (2008)

    Book  Google Scholar 

  30. Mishra, B.K., Pandey, M.K.: Fuzzy epidemic model for the transmission of worms in a computer network. Nonlinear Anal. 11(5), 4335–4341 (2010)

    Article  Google Scholar 

  31. Mondal, P.K., Jana, S., Haldar, P., Kar, T.K.: Dynamical behavior of an epidemic model in a fuzzy transmission. Int. J. Uncertain Fuzziness Knowl. Based Syst. 23(5), 651–665 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of Soovoojeet Jana is financially supported by Dept of Science & Technology and Biotechnology, Govt. of West Bengal (vide memo no. 201 (Sanc.)/ST/P/S&T/16G-12/2018 dt 19-02-2019). Moreover, the authors are very much thankful to the anonymous reviewers and Chin-Hong Park, the editor in chief of the journal, for their constructive comments and helpful suggestions to improve both the quality and presentation of the manuscript significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soovoojeet Jana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adak, S., Jana, S. Dynamical behavior of an epidemic model with fuzzy transmission and fuzzy treatment control. J. Appl. Math. Comput. 68, 1929–1948 (2022). https://doi.org/10.1007/s12190-021-01597-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01597-8

Keywords

Navigation