Skip to main content
Log in

Solvent-free lipase-catalyzed synthesis of linear and thermally stable polyesters obtained from diacids and diols

  • Original Paper
  • Published:
Brazilian Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Aliphatic polyesters are widely used in biomedical and environmental areas, and their use has grown due to environmental issues. The use of lipases as catalysts for the synthesis of polyesters is an environmentally benign alternative. In this work, the effect of monomer chain length on polyester synthesis was studied with seven diacids and six diols in a bulk system using immobilized Candida antarctica lipase B (Novozym®435). Firstly, the reaction temperature and the thermal stability of Novozym®435 (N435) were evaluated. The half-life of the commercial lipase was 24.8 h at 90 °C, and N435 maintained a residual activity of 38% after 96 h of incubation. The biocatalyst played an essential role in the reactions using monomers with longer alkylene chain length diacids (azelaic and sebacic acids) and diols (1,4-butanediol, 1,6-hexanediol, and 1,8-octanediol), giving a higher reactivity than reactions of shorter chain-length diacids (oxalic, malonic, succinic, glutaric and adipic acids) and diols (ethylene glycol and 1,3-propanediol). Polycondensation reactions carried out with 2,3-butanediol did not present a significative molecular weight. Otherwise, the reaction performed with 1,6-hexanediol resulted in polyesters with weight-average molecular weights (Mw) of 18,346 g mol−1 and 27,121 g mol−1 by reacting with azelaic and sebacic acids, respectively, at 90 °C using 5 wt.% of N435. The thermal properties of polyazelates and polysebactes were analyzed by DSC and TGA, which showed that aliphatic polyesters are practically stable at up to 380 °C, indicating their high thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguieiras ECG, Veloso CO, Bevilaqua JV, Rosas DO, Silva MAP, Langone MAP (2011) Estolides synthesis catalyzed by immobilized lipases. Enzyme Res 2011:1–7

    Article  CAS  Google Scholar 

  • Albertsson AC, Varma IK (2002) Degradable aliphatic polyesters. Springer, Berlin

    Google Scholar 

  • Arandia I, Mugica A, Zubitur M, Arbe A, Liu G, Wang D, Mincheva R (2015) How composition determines the properties of isodimorphic poly(butylene succinate- ran -butylene azelate) random biobased copolymers: From single to double crystalline random copolymers. Macromolecules 48:43–57

    Article  CAS  Google Scholar 

  • Azim H, Dekhterman A, Jiang Z, Gross RA (2006) Candida antarctica lipase B-catalyzed synthesis of poly(butylene succinate): shorter chain building blocks also work. Biomacromol 7:3093–3097

    Article  CAS  Google Scholar 

  • Bechthold I, Bretz K, Kabasci S, Kopitzky R, Springer A (2008) Succinic acid: a new platform chemical for biobased polymers from renewable resources. Chem Eng Technol 31:647–654

    Article  CAS  Google Scholar 

  • Becker J, Lange A, Fabarius J, Wittmann C (2015) Top value platform chemicals: bio-based production of organic acids. Curr Opin Biotechnol 36:168–175

    Article  CAS  PubMed  Google Scholar 

  • Binns F, Roberts SM, Taylor A, Williams CF (1993) Enzymic polymerization of an unactivated diol/diacid system. J Chem Soc Perkin Trans 1:899–904

    Article  Google Scholar 

  • Binns F, Harffey P, Roberts SM, Taylor A (1998) Studies of lipase-catalyzed polyesterification of an unactivated diacid/diol system. J Polym Sci Part A Polym Chem 36:2069–2080

    Article  CAS  Google Scholar 

  • Blundell DJ (1987) On the interpretation of multiple melting peaks in poly(ether ether ketone). Polymer (guildf) 28:2248–2251

    Article  CAS  Google Scholar 

  • Bordes P, Pollet E, Avérous L (2009) Nano-biocomposites: Biodegradable polyester/nanoclay systems. Prog Polym Sci 34:125–155

    Article  CAS  Google Scholar 

  • Bornscheuer UT, Kazlauska RJ (2006) Hydrolases in organic synthesis: regio- and stereoselective biotransformations, 2nd edn. Wiley VCH, Weinheim

    Google Scholar 

  • Celli A, Barbiroli G, Berti C, Francesco DC, Lorenzetti C, Marchese P, Marianucci E (2007) Thermal properties of poly(alkylene dicarboxylate)s derived from 1,12-dodecanedioic acid and even aliphatic diols. J Polym Sci Part B Polym Phys 45:1053–1067

    Article  CAS  Google Scholar 

  • Chang WL, Karalis T (1993) Polyesterification reactions of adipic acid-based polyesters. J Polym Sci Part A Polym Chem 31:493–504

    Article  CAS  Google Scholar 

  • Chen GQ, Patel MK (2012) Plastics derived from biological sources: present and future: a technical and environmental review. Chem Rev 112:2082–2099

    Article  CAS  PubMed  Google Scholar 

  • Corrêa INDS, Souza SL, Catran M, Bernardes OL, Portilho MF, Langone MAP (2011) Enzymatic biodiesel synthesis using a byproduct obtained from palm oil refining. Enzyme Res 2011:1–8

    Article  CAS  Google Scholar 

  • Curia S, Barclay AF, Torron S, Johansson M, Howdle SM (2015) Green process for green materials: viable low-temperature lipase-catalysed synthesis of renewable telechelics in supercritical CO2. Philos Trans R Soc A Math Phys Eng Sci 373:1–16

    CAS  Google Scholar 

  • Debuissy T, Pollet E, Avérous L (2017a) Lipase-catalyzed synthesis of biobased and biodegradable aliphatic copolyesters from short building blocks. Effect of the monomer length. Eur Polym J 97:328–337

    Article  CAS  Google Scholar 

  • Debuissy T, Sangwan P, Pollet E, Avérous L (2017b) Study on the structure-properties relationship of biodegradable and biobased aliphatic copolyesters based on 1,3-propanediol, 1,4-butanediol, succinic and adipic acids. Polymer (guildf) 122:105–116

    Article  CAS  Google Scholar 

  • Debuissy T, Pollet E, Avérous L (2017c) Enzymatic synthesis of biobased poly(1,4-butylene succinate-ran-2,3-butylene succinate) copolyesters and characterization. Influence of 1,4- and 2,3-butanediol contents. Eur Polym J 93:103–115

    Article  CAS  Google Scholar 

  • Díaz A, Franco L, Puiggalí J (2014) Study on the crystallization of poly(butylene azelate-co-butylene succinate) copolymers. Thermochim Acta 575:45–54

    Article  CAS  Google Scholar 

  • Doğan E, Küsefoğlu S (2008) Synthesis and in situ foaming of biodegradable malonic acid ESO polymers. J Appl Polym Sci 110:1129–1135

    Article  CAS  Google Scholar 

  • Douka A, Vouyiouka S, Papaspyridi LM, Papaspyrides CD (2018) A review on enzymatic polymerization to produce polycondensation polymers: the case of aliphatic polyesters, polyamides and polyesteramides. Prog Polym Sci 79:1–25

    Article  CAS  Google Scholar 

  • Edlund U, Albertsson AC (2003) Polyesters based on diacid monomers. Adv Drug Deliv Rev 55:585–609

    Article  CAS  PubMed  Google Scholar 

  • Feder D, Gross RA (2010) Exploring chain length selectivity in HiC-catalyzed polycondensation reactions. Biomacromol 11:690–697

    Article  CAS  Google Scholar 

  • Frampton MB, Zelisko PM (2013) Synthesis of lipase-catalyzed silicone-polyesters and silicone-polyamides at elevated temperatures. Chem Commun 49:9269–9271

    Article  CAS  Google Scholar 

  • Frampton MB, Séguin JP, Marquardt D, Harroun TA, Zelisko PM (2013) Synthesis of polyesters containing disiloxane subunits: Structural characterization, kinetics, and an examination of the thermal tolerance of Novozym-435. J Mol Catal B Enzym 85–86:149–155

    Article  CAS  Google Scholar 

  • Fuessl A, Yamamoto M, Schneller A (2012) Opportunities in bio-based building blocks for polycondensates and vinyl polymers. Polymer Sci A Compr Ref 10:49–70

    Article  Google Scholar 

  • Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3:25–29

    Article  CAS  Google Scholar 

  • Gross RA, Ganesh M, Lu W (2010) Enzyme-catalysis breathes new life into polyester condensation polymerizations. Trends Biotechnol 28:435–443

    Article  CAS  PubMed  Google Scholar 

  • Gustini L, Noordover BAJ, Gehrels C, Dietz C, Koning CE (2015) Enzymatic synthesis and preliminary evaluation as coating of sorbitol-based, hydroxy-functional polyesters with controlled molecular weights. Eur Polym J 67:459–475

    Article  CAS  Google Scholar 

  • Henley JP, Sadana A (1985) Categorization of enzyme deactivations using a series-type mechanism. Enzyme Microb Technol 7:50–60

    Article  CAS  Google Scholar 

  • Hollmann F, Grzebyk P, Heinrichs V, Doderer K, Thum O (2009) On the inactivity of Candida antartica lipase B towards strong acids. J Mol Catal B Enzym 57:257–261

    Article  CAS  Google Scholar 

  • Hsiao BS, Gardner KH, Wu DQ, Chu B (1993) Time-resolved X-ray study of poly(aryl ether ketone) crystallization and melting behavior: 1. Crystallization. Polymer (guildf) 34:3986–3995

    Article  CAS  Google Scholar 

  • Hunsen M, Azim A, Mang H, Wallner SR, Ronkvist A, Wenchun X, Gross RA (2007) A cutinase with polyester synthesis activity. Macromolecules 40:148–150

    Article  CAS  Google Scholar 

  • Jiang Y, Woortman AJJ, Alberda Van Ekenstein GOR, Loos K (2015) A biocatalytic approach towards sustainable furanic-aliphatic polyesters. Polym Chem 6:5198–5211

    Article  CAS  Google Scholar 

  • Kanelli M, Douka A, Vouyiouka S, Papaspyrides CD, Topakas E, Papaspyridi LM, Christakopoulos P (2014) Production of biodegradable polyesters via enzymatic polymerization and solid state finishing. J Appl Polym Sci 131:2–9

    Article  CAS  Google Scholar 

  • Kobayashi S (2010) Lipase-catalyzed polyester synthesis—a green polymer chemistry. Proc Jpn Acad Ser B Phys Biol Sci 86:338–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kokkonen P, Bednar D, Pinto G, Prokop Z, Damborsky J (2019) Engineering enzyme access tunnels. Biotechnol Adv 37:107386

    Article  CAS  PubMed  Google Scholar 

  • Koltzenburg S, Maskos M, Nuyken O (2017) Polymer chemistry. Springer-Verlag, Berlin Heidelberg

    Book  Google Scholar 

  • Kong X, Qi H, Curtis JM (2014) Synthesis and characterization of high-molecular weight aliphatic polyesters from monomers derived from renewable resources. J Appl Polym Sci 131:4–10

    Article  Google Scholar 

  • Langer E, Was̈kiewicz S, Lenartowicz-Klik M, Bortel K (2015) Application of waste poly(ethylene terephthalate) in the synthesis of new oligomeric plasticizers. Polym Degrad Stab 119:105–112

    Article  CAS  Google Scholar 

  • Laplaza J, Beardslee T, Eirich D, Picataggio S (2014) Verdezyne Inc. WO 2014/100461 A2, 26 Jun 2014

  • Li G, Yao D, Zong M (2008) Lipase-catalyzed synthesis of biodegradable copolymer containing malic acid units in solvent-free system. Eur Polym J 44:1123–1129

    Article  CAS  Google Scholar 

  • Linko YY, Wang ZL, Seppälä J (1995) Lipase-catalyzed synthesis of poly(1,4-butyl sebacate) from sebacic acid or its derivatives with 1,4-butanediol. J Biotechnol 40:133–138

    Article  CAS  Google Scholar 

  • Liu W, Chen B, Wang F, Tan T, Deng L (2011) Lipase-catalyzed of aliphatic polyesters and properties characterization. Process Bioch 46:1993–2000

    Article  CAS  Google Scholar 

  • Lu J, Wu L, Li BG (2017) High molecular weight polyesters derived from biobased 1,5-pentanediol and a variety of aliphatic diacids: synthesis, characterization, and thermo-mechanical properties. ACS Sustain Chem Eng 5:6159–6166

    Article  CAS  Google Scholar 

  • Mahapatro A, Kalra B, Kumar A, Gross RA (2003) Lipase-catalyzed polycondensations: Effect of substrates and solvent on chain formation, dispersity, and end-group structure. Biomacromol 4:544–551

    Article  CAS  Google Scholar 

  • Mahapatro A, Kumar A, Kalra B, Gross RA (2004) Solvent-free adipic acid/1,8-octanediol condensation polymerizations catalyzed by Candida antartica lipase B. Macromolecules 37:35–40

    Article  CAS  Google Scholar 

  • Marand H, Alizadeh A, Farmer R, Desai R, Velikov V (2000) Influence of structural and topological constraints on the crystallization and melting behavior of polymers. 2. Poly(arylene ether ether ketone). Macromolecules 33:3392–3403

    Article  CAS  Google Scholar 

  • Mei Y, Kumar A, Gross RA (2002) Probing water-temperature relationships for Lipase-catalyzed lactone ring-opening polymerizations. Macromolecules 35:5444–5448

    Article  CAS  Google Scholar 

  • Melnikov AP, Rosenthal M, Ivanov DA (2018) What thermal analysis can tell us about melting of semicrystalline polymers: exploring the general validity of the technique. ACS Macro Lett 7:1426–1431

    Article  CAS  Google Scholar 

  • Miletic N, Loos K, Gross RA (2011) Biocatalysis in polymer chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  • Mincheva R, Delangre A, Raquez JM, Narayan R, Dubois P (2013) Biobased polyesters with composition-dependent thermomechanical properties: synthesis and characterization of poly(butylene succinate-co-butylene azelate). Biomacromol 14:890–899

    Article  CAS  Google Scholar 

  • Mishra MK, Varughese S, Ramamurty U, Desiraju GR (2013) Odd-even effect in the elastic modulii of α, ω- alkanedicarboxylic acids. J Am Chem Soc 135:8121–8124

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HD, Löf D, Hvilsted S, Daugaard AE (2016) Highly branched bio-based unsaturated polyesters by enzymatic polymerization. Polymers (basel) 8:1–12

    Article  Google Scholar 

  • Okumura S, Iwai M, Tominaga Y (1984) Synthesis of ester oligomer by Aspergillus niger Lipase. Agric Biol Chem 48:2805–2808

    CAS  Google Scholar 

  • Papageorgiou GZ, Bikiaris DN, Achilias DS, Karagiannidis N (2010) Synthesis, crystallization, and enzymatic degradation of the biodegradable polyester poly(ethylene azelate). Macromol Chem Phys 211:2585–2595

    Article  CAS  Google Scholar 

  • Papageorgiou GZ, Bikiaris DN, Achilias DS, Papastergiadis E, Docoslis A (2011) Crystallization and biodegradation of poly(butylene azelate): comparison with poly(ethylene azelate) and poly(propylene azelate). Thermochim Acta 515:13–23

    Article  CAS  Google Scholar 

  • Parcheta P, Datta J (2017) Structure analysis and thermal degradation characteristics of bio-based poly(propylene succinate)s obtained by using different catalyst amounts. J Therm Anal Calorim 130:197–206

    Article  CAS  Google Scholar 

  • Parcheta P, Datta J (2018) Kinetics study of the fully bio-based poly(propylene succinate) synthesis. Functional group approach. Polym Degrad Stab 155:238–249

    Article  CAS  Google Scholar 

  • Parcheta P, Koltsov I, Datta J (2018) Fully bio-based poly(propylene succinate) synthesis and investigation of thermal degradation kinetics with released gases analysis. Polym Degrad Stab 151:90–99

    Article  CAS  Google Scholar 

  • Pellis A, Herrero-Acero E, Gardossi L, Ferrario V, Guebitz GM (2016) Renewable building blocks for sustainable polyesters: new biotechnological routes for greener plastics. Polym Int 65:861–871

    Article  CAS  Google Scholar 

  • Pellis A, Comerford JW, Maneffa AJ, Sipponen MH, Clark JH, Farmer TJ (2018) Elucidating enzymatic polymerizations: chain-length selectivity of Candida antarctica lipase B towards various aliphatic diols and dicarboxylic acid diesters. Eur Polym J 106:79–84

    Article  CAS  Google Scholar 

  • Pérez-Venegas M, Tellez-Cruz MM, Solorza-Feria O, López-Munguía A, Castillo E, Juaristi E (2020) Thermal and mechanical stability of immobilized Candida antarctica Lipase B: an approximation to mechanochemical energetics in enzyme catalysis. Chem Cat Chem 12:803–811

    Google Scholar 

  • Pleiss J, Fischer M, Schmid RD (1998) Anatomy of lipase binding sites: the scissile fatty acid binding site. Chem Phys Lipids 93:67–80

    Article  CAS  PubMed  Google Scholar 

  • Polakovič M, Vrábel P (1996) Analysis of the mechanism and kinetics of thermal inactivation of enzymes: critical assessment of isothermal inactivation experiments. Process Biochem 31:787–800

    Article  Google Scholar 

  • Poojari Y, Palsule AS, Cai M, Clarson SJ, Gross RA (2008) Synthesis of organosiloxane copolymers using enzymatic polyesterification. Eur Polym J 44:4139–4145

    Article  CAS  Google Scholar 

  • Rahman M, Brazel CS (2004) The plasticizer market: an assessment of traditional plasticizers and research trends to meet new challenges. Prog Polym Sci 29:1223–1248

    Article  CAS  Google Scholar 

  • Ravi A, Nanthini R, Karunanighi M, Jaisankar V (2011) Synthesis and characterization of certain biodegradable random aliphatic copolyesters. Asian J Chem 23:556–560

    CAS  Google Scholar 

  • Rim PB, Runt JP (1984) Melting point depression in crystalline/compatible polymer blends. Macromolecules 17:1520–1526

    Article  CAS  Google Scholar 

  • Rowe MD, Eyiler E, Walters KB (2016) Bio-based plasticizer and thermoset polyesters: a green polymer chemistry approach. J Appl Polym Sci 133:1–7

    Article  CAS  Google Scholar 

  • Sangster J (1989) Octanol water partition coefficients of simple organic compounds. J Phys Chem Ref Data 18:1111–1229

    Article  CAS  Google Scholar 

  • Soccio M, Lotti N, Finelli L, Gazzano M, Munari A (2007) Aliphatic poly(propylene dicarboxylate)s: effect of chain length on thermal properties and crystallization kinetics. Polymer (guildf) 48:3125–3136

    Article  CAS  Google Scholar 

  • Sun YS, Woo EM (1999) Relationships between polymorphic crystals and multiple melting peaks in crystalline syndiotactic polystyrene. Macromolecules 32:7836–7844

    Article  CAS  Google Scholar 

  • Tomke PD, Zhao X, Chiplunkar PP, Xu B, Wang H, Silva C, Rathod VK (2017) Lipase-ultrasound assisted synthesis of polyesters. Ultrason Sonochem 38:496–502

    Article  CAS  PubMed  Google Scholar 

  • Umare SS, Chandure AS, Pandey RA (2007) Synthesis, characterization and biodegradable studies of 1,3-propanediol based polyesters. Polym Degrad Stab 92:464–479

    Article  CAS  Google Scholar 

  • Uyama H, Inada K, Kobayashi S (1998) Enzymatic polymerization of dicarboxylic acid and glycol to polyester in solvent-free system. Chem Lett 27:1285–1286

    Article  Google Scholar 

  • Uyama H, Inada K, Kobayashi S (2000) Lipase-catalyzed synthesis of aliphatic polyesters by polycondensation of dicarboxylic acids and glycols in solvent-free system. Polym J 32:440–443

    Article  CAS  Google Scholar 

  • Uyama H, Wada S, Fukui T, Kobayashi S (2003) Lipase-catalyzed synthesis of polyesters from anhydride derivatives involving dehydration. Biochem Eng J 16:145–152

    Article  CAS  Google Scholar 

  • Vancsó-Szmercsányi I, Maros-Gréger K, Makay-Bödi E (1969) Investigations on polyesterification reactions. Eur Polym J 5:155–161

    Article  Google Scholar 

  • Varma IK, Albertsson A-C, Rajkhowa R, Srivastava RK (2005) Enzyme catalyzed synthesis of polyesters. Prog Polym Sci 30:949–981

    Article  CAS  Google Scholar 

  • Veld MAJ, Palmans ARA (2011) Enzymatic Polymerization. Springer-Verlag Berlin Heidelberg, Berlin

    Google Scholar 

  • Vouyiouka SN, Topakas E, Katsini A, Papaspyrides CD, Christakopoulos P (2013) A green route for the preparation of aliphatic polyesters via lipase-catalyzed prepolymerization and low-temperature postpolymerization. Macromol Mater Eng 298:679–689

    Article  CAS  Google Scholar 

  • Wallace JS, Morrow CJ (1989) Biocatalytic synthesis of polymers. II. Preparation of [AA–BB]x polyesters by porcine pancreatic lipase catalyzed transesterification in anhydrous, low polarity organic solvents. J Polym Sci Part A Polym Chem 27:3271–3284

    Article  CAS  Google Scholar 

  • Wang Z-G, Wang X-H, Hsiao BS, Marand PH, Alizadeh A, Farmer R, Desai R, Velikov V (2000) Structure and morphology development in syndiotactic polypropylene during isothermal crystallization and subsequent melting. J Polym Sci Part B Polym Phys 39:2982–2995

    Article  Google Scholar 

  • Yasuniwa M, Satou T (2002) Multiple melting behavior of poly(butylene succinate). I. Thermal analysis of melt-crystallized samples. J Polym Sci Part B Polym Phys 40:2411–2420

    Article  CAS  Google Scholar 

  • Yeniad B, Naik H, Heise A (2010) Lipases in polymer chemistry. Springer, Berlin

    Book  Google Scholar 

  • Yoo ES, Im SS (1999) Melting behavior of poly(butylene succinate) during heating scan by DSC. J Polym Sci Part B Polym Phys 37:1366

    Article  Google Scholar 

  • Yoon KR, Hong SP, Kong B, Choi IS (2012) Polycondensation of sebacic acid with primary and secondary hydroxyl groups containing diols catalyzed by candida antarctica lipase B. Synth Commun 42:3504–3512

    Article  CAS  Google Scholar 

  • Yu Y, Sang L, Wei Z, Leng X, Li Y (2017) Unique isodimorphism and isomorphism behaviors of even-odd poly(hexamethylene dicarboxylate) aliphatic copolyesters. Polymer (guildf) 115:106–117

    Article  CAS  Google Scholar 

  • Yu Y, Wei Z, Liu Y, Hua Z, Leng X, Li Y (2018) Effect of chain length of comonomeric diols on competition and miscibility of isodimorphism: a comparative study of poly(butylene glutarate-co-butylene azelate) and poly(octylene glutarate-co-octylene azelate). Eur Polym J 105:274–285

    Article  CAS  Google Scholar 

  • Zhao X, Bansode SR, Ribeiro A, Abreu AS, Oliveira C, Parpot P, Gogate PR (2016) Ultrasound enhances lipase-catalyzed synthesis of poly (ethylene glutarate). Ultrason Sonochem 31:506–511

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank IFRJ, UERJ, Petrobras for funding, and LCPRB/IMA/UFRJ for GPC, TGA, and DSC analysis. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Antunes Pereira Langone.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

43153_2021_137_MOESM1_ESM.tif

Supplementary Figure 1: Gel permeation chromatogram of poly(butylene azelate) obtained at 30 °C using tetrahydrofuran as the eluent. Reaction conditions: molar ratio of 1,4-BDO/azelaic acid equal to 1, t = 96 h, T = 90 °C, 5 wt.% of Novozym 435 (TIF 126 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campisano, I.S.P., de Queiros Eugenio, E., de Oliveira Veloso, C. et al. Solvent-free lipase-catalyzed synthesis of linear and thermally stable polyesters obtained from diacids and diols. Braz. J. Chem. Eng. 38, 549–562 (2021). https://doi.org/10.1007/s43153-021-00137-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43153-021-00137-y

Keywords

Navigation