Skip to main content
Log in

WING BUFFET CONTROL BY USING AN EJECTOR-TYPE DEVICE

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

A problem of the flow around a rectangular wing under the transonic buffet conditions in a wind tunnel is investigated numerically and experimentally. It is shown that a three-dimensional flow with a “mushroom" structure of the surface streamlines on the wing surface is formed instead of a close-to-two-dimensional flow in the case with self-excited oscillations along the streamwise coordinate (buffet). For the purpose of buffet control, an ejector is proposed, which provides boundary layer suction from the upper surface of the wing and jet ejection at the trailing edge of the wing. The spectral analysis of the experimental pressure oscillations on the upper surface of the wing shows that the proposed device effectively suppresses pressure oscillations at the buffet frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. G. F. Moss and P. M. Murdin, “Two-Dimensional Low-Speed Tunnel Tests on the NACA 0012 Section Including Measurements Made during Pitching Oscillations at the Stall: Tech. rep. C. P.," Aeronaut. Res. Council. No. 1145. L., 1971.

  2. N. Gregory, V. G. Quincey, C. L. O’Reilly, and D. J. Hall, “Progress Report on Observations of Three-Dimensional Flow Patterns Obtained during Stall Development on Aerofoils, and on the Problem of Measuring Two-Dimensional Characteristics: Tech. rep. C. P.," Aeronaut. Res. Council. No. 1146. L., 1971.

  3. L. Manni, T. Nishino, and P.-L. Delafin, “Numerical Study of Airfoil Stall Cells using a Very Wide Computational Domain," Comput. Fluids 140, 260–269 (2016).

    Article  MathSciNet  Google Scholar 

  4. V. Brion, J. Dandois, J.-C. Abart, and P. Paillart, “Experimental Analysis of the Shock Dynamics on a Transonic Laminar Airfoil," Progr. Flight Phys. 9, 365–386 (2017).

    Article  Google Scholar 

  5. L. Jacquin, P. Molton, S. Deck, et al., “Experimental Study of Shock Oscillation Over a Transonic Supercritical Profile," AIAA J. 47 (9), 1985–1994 (2009).

    Article  ADS  Google Scholar 

  6. S. Deck, “Numerical Simulation of Transonic Buffet Over a Supercritical Airfoil," AIAA J. 43 (7), 1556–1566 (2005).

    Article  ADS  Google Scholar 

  7. F. Grossi, M. Braza, and Y. Hoarau, “Prediction of Transonic Buffet by Delayed Detached-Eddy Simulation," AIAA J. 52(10), 2300–2312 (2014).

    Article  ADS  Google Scholar 

  8. A. V. Petrov, A. V. Potapchik, and V. G. Soudakov, “Investigation of Flow Control over the Supercritical Airfoil by Tangential Jet Blowing at Transonic Speeds," in Proc. of the 30th Congress of the Intern. Council of the Aeronautical Sci.(ICAS 2016), Doejeon (Korea), September 25–30, 2016. http://www.icas.org/ ICAS_ARCHIVE/ICAS2016/data/preview/2016_0173.htm.

  9. F. Sartor and S. Timme, “Delayed Detached-Eddy Simulation of Shock Buffet on Half Wing-Body," AIAA J. 55 (4), 1230–1240 (2017).

    Article  ADS  Google Scholar 

  10. F. Plante, J. Dandois, S. Beneddine, et al., “Numerical Simulations and Global Stability Analyses of Transonic Buffet and Subsonic Stall," in Proc. of the 54th 3AF Intern. Conf. on Appl. Aerodynamics, Paris (France), March 25–27, 2019. https://hal.archives-ouvertes.fr/hal-02127307/document.

  11. J. D. Crouch, A. Garbaruk, D. Magidov, and A. Travin, “Origin of Transonic Buffet on Aerofoils," J. Fluid Mech. 628, 357–369 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  12. J. D. Crouch, A. Garbaruk, and M. Strelets, “Global Instability Analysis of Unswept and Swept-Wing Transonic Buffet Onset.," Atlanta, 2018. (Paper / AIAA; N 2018-3229).

  13. E. Moreau, “Airflow Control by Non-Thermal Plasma Actuators," J. Phys. D. Appl. Phys. 40, 605–636 (2007).

    Article  ADS  Google Scholar 

  14. A. A. Sidorenko, A. D. Budovskii, P. A. Polivanov, et al., “Suppression of Transonic Buffet with Plasma Vortex Generators," Teplofiz. Aeromekh. 26 (4), 503–519 (2019) [Thermophys. Aeromech. 26 (4), 465–480 (2019)].

    Article  ADS  Google Scholar 

  15. A. V. Voevodin, A. A. Kornyakov, A. S. Petrov, et al., “Wing Buffeting Control at Transonic Flight Velocities," Prikl. Mekh. Tekh. Fiz. 59 (4), 39–49 (2018) [J. Appl. Mech. Tech. Phys. 59 (4), 608–617 (2018)].

    Article  ADS  Google Scholar 

  16. F. R. Menter, “Eddy Viscosity Transport Equations and Their Relation to the Model," ASME J. Fluids Engng. 119, 876–884 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kornyakov.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2021, Vol. 62, No. 2, pp. 150–159.https://doi.org/10.15372/PMTF20210215.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voevodin, A.V., Kornyakov, A.A., Petrov, A.S. et al. WING BUFFET CONTROL BY USING AN EJECTOR-TYPE DEVICE. J Appl Mech Tech Phy 62, 308–316 (2021). https://doi.org/10.1134/S0021894421020152

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894421020152

Keywords

Navigation