Skip to main content
Log in

MODEL OF POLYMORPHIC TRANSFORMATION IN A SHOCK WAVE. 2. SILICA

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

A model linking the shock-inducedd polymorphic transformation of a crystalline material with a change in its elastic energy is presented. The complete and partial transformations of the material at the shock-wave front are considered, and the conditions of their occurrence are determined. The model was tested by describing polymorphic transition in nonporous pyrolytic graphite and transitions in the silica system. It is shown that the model satisfactorily describes available experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. S. A. Kinelovsky, “Model of Polymorphic Transformation in a Shock Wave. 1. Carbon," Prikl. Mekh. Tekh. Fiz. 61 (4), 141–150 (2020) [J. Appl. Mech. Tekh, Fiz. 61 (4), 623—631 (2020); https://doi.org/ 10.1134/S0021894420040161].

    Article  ADS  MathSciNet  Google Scholar 

  2. R. J. Hemley, C. T. Prewitt, and K. J. Kingma, “High Pressure Behavior of Silica," Rev. Mineral. 29, 41–82 (1994).

    Google Scholar 

  3. R. F. Trunin, Studies of Extreme States of Condensed Materials Using Shock Waves. Hugoniot’s Equations(All-Russian Research Institute of Experimental Physics, Sarov, 2006) [in Russian].

  4. J. W. Swegle, “Irreversible Phase Transitions and Wave Propagation in Silicate Geologic Materials," J. Appl. Phys. 68, 1563–1579 (1990).

    Article  ADS  Google Scholar 

  5. M. A. Podurets and P. F. Trunin, “Unique Features in the Shock Compressibility of Silicon Dioxide upon Manifestation of Phase Transition Kinetics Singularities," Fiz. Goreniya Vzryva23 (1), 98–101 (1987) [Combust., Expl., Shock Waves23 (1), 90–92 (1987); https://doi.org/10.1007/BF00755644].

    Article  Google Scholar 

  6. R. F. Trunin, “Shock Compression of Condensed Materials (Laboratory Studies)," Uspekhi Fiz. Nauk 171 (4), 387–414 (2001).

    Google Scholar 

  7. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966) [in Russian].

  8. A. I. Voropinov and M. A. Podurets, “Structure of a Shock-Wave Front in Quartz in the Region of the Phase Transition of Quartz into Stishovite," Prikl. Mekh. Tekh. Fiz., No. 6, 70–78 (1980) [J. Appl. Mech. Tekh, Fiz. 21, 795–801 (1980); https://doi.org/10.1007/BF00912140].

    Article  ADS  Google Scholar 

  9. M. A. Podurets, G. V. Simakov, G. S. Telegin, and R. F. Trunin, “Polymorphism of Silica in Shock Waves and the Equation of State of Coesite and Stishovite," Izv. Akad. Nauk SSSR. Fizika Zemli, No. 1, 16–25 (1981).

    Google Scholar 

  10. Y. Nishihara, K. Nakayama, E. Takahashi, et al., “\(P{-}V{-}T\)Equation of State of Stishovite to the Mantle Transition Zone Conditions," Phys. Chem. Mineral. 31 (10), 660–670 (2005).

    Article  ADS  Google Scholar 

  11. LASL Shock Hugoniot Data Ed. by S. P. Marsh (Univ. California Press, Berkeley, 1980).

    Google Scholar 

  12. R. F. Trunin, G. V. Simakov, M. A. Podurets, et al., “Dynamic Compressibility of Quartz and Quartzite at High Pressures," Izv. Akad. Nauk SSSR. Fizika Zemli, No. 1, 13–20 (1971).

    Google Scholar 

  13. R. F. Trunin, “Shock Compressibility of Condensed Materials in Strong Shock Waves Generated by Underground Nuclear Explosions," Uspekhi Fiz. Nauk 164 (11), 1215–1237 (1994).

    Article  Google Scholar 

  14. L. V. Al’tshuler, R. F. Trunin, and G. V. Simakov, “Shock Compression of Periclase and Quartz and the Composition of the Earth’s Lower Mantle," Izv. Akad. Nauk SSSR. Fizika Zemli 29(10), 1–6 (1965).

    Google Scholar 

  15. Electronic Database of Shock Wave Experiments. http://www.ihed.ras.ru/rusbank/catsearch.php.

  16. S.-N. Luo, J. L. Mosenfelder, P. D. Asimow, and T. J. Ahrens, “Direct Shock Wave Loading of Stishovite to 235 GPa: Implications for Perovskite Stability Relative to an Oxide Assemblage at Lower Mantle Conditions," Geophys. Res. Lett. 29 (14), 361–365 (2002).

    Article  Google Scholar 

  17. S. N. Luo, J. L. Mosenfelder, P. D. Asimov, and T. J. Ahrens, “Stishovite and Its Implications in Geophysics: New Results from Shock-Wave Experiments and Theoretical Modeling," Uspekhi Fiz. Nauk 172 (4), 475–480 (2002).

    Article  Google Scholar 

  18. R. J. Hemley, J. Shu, M. A. Carpenter, et al., “Strain/Order Parameter Coupling in the Ferroelastic Transition in Dense SiO\(_2\)," Solid State Comm. 114 (10), 527–532 (2000).

    Article  ADS  Google Scholar 

  19. W. R. Panero, L. R. Benedetti, and R. J. Jeanloz, “Equation of State of Stishovite and Interpretation of SiO\(_2\)Shock-Compression Data," J. Geophys. Res. 108 (B1), 51–57 (2003).

    Article  Google Scholar 

  20. V. S. Gorshkov, V. G. Saveliev, and N. F. Fedorov, Physical Chemistry of Silicates and Other Refractory Compounds (Vysh. Shk., Moscow, 1988).

    Google Scholar 

  21. J. C. Boettger, “New Model for the Shock-Induced\(\alpha\)-Quartz\(\to\)Stishovite Phase Transition in Silica," J. Appl. Phys.72, 5500–5508 (1992).

    Article  ADS  Google Scholar 

  22. M. A. Podurets, “Evolution of a Shock Wave in Quartz in the Region of the Phase Transition to Stishovite. Calculations for the Hydrodynamic Model of Tensogenic Kinetics," Vopr. Atom. Nauki Tekhniki. Ser. Teoret. Prikl. Fiz., No. 1, 3–24 (1998).

    Google Scholar 

  23. R. G. McQueen and S. P. Marsh, “Hugoniots of Graphites of Various Initial Densities and the Equation of State of Carbon," inBehavior of Dense Media under High Dynamic Pressures: Proc. of the Symp. on the Behavior of Dense Media under High Dynamic Pressures, Sept. 1967 (Gordon and Breach, New York, 1968), pp. 207–216.

    Google Scholar 

  24. W. H. Gust, “Phase Transition and Shock-Compression Parameters to 120 GPa for Three Types of Graphite and for Amorphous Carbon," Phys. Rev. B 22 (6), 4744–4749 (1980).

    Article  ADS  Google Scholar 

  25. A. Z. Zhuk, A. V. Ivanov, and G. I. Kanel’, “Kinetics of the Graphite–Diamond Phase Transition," Teplofiz. Vys. Temp.29 (3), 486–493 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kinelovskii.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2021, Vol. 62, No. 2, pp. 42–52.https://doi.org/10.15372/PMTF20210204.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kinelovskii, S.A. MODEL OF POLYMORPHIC TRANSFORMATION IN A SHOCK WAVE. 2. SILICA. J Appl Mech Tech Phy 62, 214–223 (2021). https://doi.org/10.1134/S0021894421020048

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894421020048

Keywords

Navigation