Skip to main content
Log in

Variational model of thermal explosion in an ellipsoid of revolution

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

According to the formulation of the nonlinear problem of stationary heat conduction in a homogeneous ellipsoid, when the intensity of volume energy release increases with temperature, a variational form of a mathematical model of a thermal explosion has been developed. This form contains a functional defined on a set of continuous and piecewise differentiable functions. These functions approximate the temperature distribution in the ellipsoid volume and accept a given temperature on its surface. The study of stationary points of the functional makes it possible to estimate a combination of defining parameters in which the temperature state in the ellipsoid precedes the thermal explosion. A quantitative analysis of the variational form of the model has been carried out with the exponential growth of the energy release intensity with temperature increase. The study introduces a relation for estimating an integral error arising when a specific approximating function is used. The comparison of such estimates for various approximating functions makes it possible to choose the function closest to the temperature distribution preceding the thermal explosion in the ellipsoid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pozin, M.E.: Mineral fertilizer technology. L. Khimia, 1982, 352 p. (in Russian)

  2. Fioshina, M.A., Rusin M.A.: Fundamentals of chemistry and technology of powders and solid rocket fuels. M. RXTU im. D.I. Mendeleeva, 2001. 207 p. (in Russian)

  3. Malxasyan, R.T., Arutyunyan, R.V., Kamaeva, L.V., Salamatov, E.I.: Study of the phase transition of amorphous tungsten to the crystalline state. Izvestiya NAN Armenii. Fizika. 49(1), 54–61 (2014). ((in Russian))

    Google Scholar 

  4. Derevich, I.V., Ermolaev, V.S., Mordkovich, V.Z., Solomonik, I.G., Fokina, AYu.: Heat and mass transfer in Fisher–Tropsch catalist granule with localized cobalt microparticles. Int. J. Heat Mass Transf. 121(June), 1335–1349 (2018)

    Article  Google Scholar 

  5. Medard, L.A.: Accidental explosions: physical and chemical properties. Ellis Horwood, 1989. 400 p

  6. Gelfand, B.E., Silnikov, M.V.: Chemical and physical explosions. Parameters and control. SPb.: Poligon, 2003. 416 p. (in Russian)

  7. Manzhesov, V.I., Popov, I.A., Shhedrin, D.S.: Technology storage of crop products. Voronezh: FGOU VPO VGAU, 2009. 249 p. (in Russian)

  8. Frank-Kameneczkij, D.A.: Diffusion and heat transfer in chemical kinetics. M.: Nauka, 1987. 502 p. (in Russian)

  9. Zeldovich, Y.B., Barenblatt, G.I., Librovich, V.B., Maxviladze, G.M.: Mathematical theory of combustion and explosion. M.: Nauka, 1980. 480 p. (in Russian)

  10. Kuvyrkin, G.N., Savelyeva, I.Y., Zarubin, V.S.: Estimations of the parameters of a thermal explosion in a triaxial ellipsoid. Zeitschrift fur Angewandte Mathematik und Physik 71(4), 113 (2020)

    Article  MathSciNet  Google Scholar 

  11. Sivashinskij, G.I.: On the existence and stability of solutions in the theory of thermal explosion. Prikladnaya matematika i mexanika 31(1), 137–139 (1967). ((in Russian))

    Google Scholar 

  12. Kuvyrkin, G.N., Savelyeva, I.Y., Zarubin, V.S.: Dual variational model of a thermal breakdown of a dielectric layer at an alternating voltage. Zeitschrift fur Angewandte Mathematik und Physik 70(4), 115 (2019)

    Article  MathSciNet  Google Scholar 

  13. Zarubin, V.S., Kuvyrkin, G.N., Savelyeva, IYu.: Mathematical model of thermal breakdown of a plane layer of a polar dielectric. Zeitschrift fur Angewandte Mathematik und Physik 69(4), 91 (2018)

    Article  MathSciNet  Google Scholar 

  14. Zarubin, V.S., Kuvyrkin, G.N., Savel’eva, IYu.: The variational form of the mathematical model of a thermal explosion in a solid body with temperature-dependent thermal conductivity. High Temp. 56(2), 223–228 (2018). https://doi.org/10.1134/S0018151X18010212

    Article  Google Scholar 

  15. Derevich, I.V., Fokina, AYu.: Mathematical model of Fisher–Tropsch catalist Pellet with pointed centers of synthesis. J. Phys. Conf. Ser. 891, 012111 (2017)

    Article  Google Scholar 

  16. Derevich, I.V., Fokina, A.Y.: Mathematical model of heat transfer in the catalist granule with point reaction centers. J. Eng. Phys. Thermophys. 91(1), 40 (2018)

    Article  Google Scholar 

  17. Zarubin, V.S.: Engineering Methods for Solving Heat Conduction Problems. Moscow: Energoatomizdat, 328 p. (in Russian) (1983)

  18. Galanin, M.P., Savenkov, E.B.: Methods of numerical analysis of mathematical models. M.: Izd-vo MGTU im. N.E.Baumana, 2010. 591 p. (in Russian)

  19. Vlasova, E.A., Zarubin, V.S., Kuvyrkin, G.N.: Approximate methods of mathematical physics. M.: Izd-vo MGTU im. N.E.Baumana, 2004. 700 p. (in Russian)

  20. Parks, J.R.: Criticality criteria for various configurations of a self-heating chemical as functions of activation energy and temperature of assembly. J. Chem. Phys. 34(1), 46–50 (1961)

    Article  Google Scholar 

Download references

Acknowledgements

This work was support by Ministry of Science and Higher Education of the Russian Federation [Grants No. 0705-2020-0032].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Y. Savelyeva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarubin, V.S., Kuvyrkin, G.N. & Savelyeva, I.Y. Variational model of thermal explosion in an ellipsoid of revolution. Z. Angew. Math. Phys. 72, 159 (2021). https://doi.org/10.1007/s00033-021-01586-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01586-8

Keywords

Mathematics Subject Classification

Navigation