Skip to main content
Log in

Recent Strategies on Hybrid Inorganic-Graphene Materials for Enhancing the Electrocatalytic Activity Towards Heavy Metal Detection

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The presence of heavy metals in industrial effluents has recently become a source of concern for human health because of their toxicity. The released heavy metals have the potential to accumulate in living organisms, resulting in the development of a number of diseases and disorders. A promising response with high precision can be obtained through the development of prospective nanomaterials when a sensitive and selective determination of heavy metals is required. However, in order to be successful, the latest electrochemical sensing approaches need substantial enhancement in rapid response, signal amplification and, specificity. To achieve these requirements using an electrochemical pathway for detection of heavy metals at low cost, the evolution of hybrid materials has emerged as a new type of functional materials. On the basis of this review, we will examine and highlight the most recent developments in the synthesis of inorganic-graphene hybrid materials for enhancing the sensing behavior of toxic metals are discussed.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Karimi-Maleh H, Ranjbari S, Tanhaei B, Ayati A, Orooji Y, Alizadeh M, Karimi F, Salmanpour S, Rouhi J, Sillanpää M, Sen F (2021) Novel 1-butyl-3-methylimidazolium bromide impregnated chitosan hydrogel beads nanostructure as an efficient nanobio-adsorbent for cationic dye removal: Kinetic study. Environ Res 195:110809. doi:https://doi.org/10.1016/j.envres.2021.110809

    Article  CAS  PubMed  Google Scholar 

  2. Karimi-Maleh H, Shafieizadeh M, Taher MA, Opoku F, Kiarii EM, Govender PP, Ranjbari S, Rezapour M, Orooji Y (2020) The role of magnetite/graphene oxide nano-composite as a high-efficiency adsorbent for removal of phenazopyridine residues from water samples, an experimental/theoretical investigation. J Mol Liq 298:112040. https://doi.org/10.1016/j.molliq.2019.112040

    Article  CAS  Google Scholar 

  3. Onac C, Kaya A, Atar N, Sener I, Alpoguz HK (2020) Superiority of modified polymeric membrane with nanomaterial on temperature and mechanical stability and application in industrial waste water. ECS J Solid State Sci Tech 9(6):061019. https://doi.org/10.1149/2162-8777/aba725

    Article  CAS  Google Scholar 

  4. Salandari-Jolge N, Ensafi AA, Rezaei B (2021) Ultra-sensitive electrochemical aptasensor based on zeolitic imidazolate framework-8 derived Ag/Au core-shell nanoparticles for mercury detection in water samples. Sens Actuators B 331:129426. doi:https://doi.org/10.1016/j.snb.2020.129426

    Article  CAS  Google Scholar 

  5. Khosropour H, Rezaei B, Ensafi AA (2019) A selective and sensitive detection of residual hazardous textile dyes in wastewaters using voltammetric sensor. Microchem J 146:548–556. doi:https://doi.org/10.1016/j.microc.2019.01.055

    Article  CAS  Google Scholar 

  6. Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8(3):199–216. doi:https://doi.org/10.1007/s10311-010-0297-8

    Article  CAS  Google Scholar 

  7. Johri N, Jacquillet G, Unwin R (2010) Heavy metal poisoning: the effects of cadmium on the kidney. Biometals 23(5):783–792. doi:https://doi.org/10.1007/s10534-010-9328-y

    Article  CAS  PubMed  Google Scholar 

  8. Almomani F, Bhosale R, Khraisheh M, kumar A, Almomani T (2020) Heavy metal ions removal from industrial wastewater using magnetic nanoparticles (MNP). Appl Surf Sci 506:144924. doi:https://doi.org/10.1016/j.apsusc.2019.144924

    Article  CAS  Google Scholar 

  9. Rathnayake IVN, Megharaj M, Krishnamurti GSR, Bolan NS, Naidu R (2013) Heavy metal toxicity to bacteria – Are the existing growth media accurate enough to determine heavy metal toxicity? Chemosphere 90(3):1195–1200. https://doi.org/10.1016/j.chemosphere.2012.09.036

    Article  CAS  PubMed  Google Scholar 

  10. Stüber F, Font J, Fortuny A, Bengoa C, Eftaxias A, Fabregat A (2005) Carbon materials and catalytic wet air oxidation of organic pollutants in wastewater. Top Catal 33(1):3–50. doi:https://doi.org/10.1007/s11244-005-2497-1

    Article  CAS  Google Scholar 

  11. Spadaro L, Arena F, Di Chio R, Palella A (2019) Definitive assessment of the level of risk of exhausted catalysts: Characterization of Ni and V contaminates at the limit of detection. Top Catal 62(1):266–272. https://doi.org/10.1007/s11244-018-1118-8

    Article  CAS  Google Scholar 

  12. Shahid M, Dumat C, Khalid S, Schreck E, Xiong T, Niazi NK (2017) Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. J Hazard Mater 325:36–58. doi:https://doi.org/10.1016/j.jhazmat.2016.11.063

    Article  CAS  PubMed  Google Scholar 

  13. Ahmad SZN, Wan Salleh WN, Ismail AF, Yusof N, Mohd Yusop MZ, Aziz F (2020) Adsorptive removal of heavy metal ions using graphene-based nanomaterials: Toxicity, roles of functional groups and mechanisms. Chemosphere 248:126008. doi:https://doi.org/10.1016/j.chemosphere.2020.126008

    Article  CAS  PubMed  Google Scholar 

  14. Egorova KS, Ananikov VP (2016) Which metals are green for catalysis? comparison of the toxicities of Ni, Cu, Fe, Pd, Pt, Rh, and Au salts. Angew Chem Int Ed 55(40):12150–12162. https://doi.org/10.1002/anie.201603777

    Article  CAS  Google Scholar 

  15. Zuo W, Yu Y, Huang H (2021) Making waves: Microbe-photocatalyst hybrids may provide new opportunities for treating heavy metal polluted wastewater. Water Res 195:116984. doi:https://doi.org/10.1016/j.watres.2021.116984

    Article  CAS  PubMed  Google Scholar 

  16. Vuković J, Avidad MA, Capitán-Vallvey LF (2012) Characterization of disposable optical sensors for heavy metal determination. Talanta 94:123–132. doi:https://doi.org/10.1016/j.talanta.2012.03.006

    Article  CAS  PubMed  Google Scholar 

  17. Ajith MP, Priyadarshini E, Rajamani P (2020) Effective and selective removal of heavy metals from industrial effluents using sustainable Si–CD conjugate based column chromatography. Biores Technol 314:123786. https://doi.org/10.1016/j.biortech.2020.123786

    Article  CAS  Google Scholar 

  18. Li K, Yang H, Yuan X, Zhang M (2021) Recent developments of heavy metals detection in traditional Chinese medicine by atomic spectrometry. Microchem J 160:105726. doi:https://doi.org/10.1016/j.microc.2020.105726

    Article  CAS  Google Scholar 

  19. Habte G, Choi JY, Nho EY, Oh SY, Khan N, Choi H, Park KS, Kim KS (2015) Determination of toxic heavy metal levels in commonly consumed species of shrimp and shellfish using ICP-MS/OES. Food Sci Biotechnol 24(1):373–378. doi:https://doi.org/10.1007/s10068-015-0049-4

    Article  CAS  Google Scholar 

  20. Xiao Q, Xu C (2020) Research progress on chemiluminescence immunoassay combined with novel technologies. TrAC Trends Anal Chem 124:115780. doi:https://doi.org/10.1016/j.trac.2019.115780

    Article  CAS  Google Scholar 

  21. Bouša D, Pumera M, Sedmidubský D, Šturala J, Luxa J, Mazánek V, Sofer Z (2016) Fine tuning of graphene properties by modification with aryl halogens. Nanoscale 8(3):1493–1502. doi:https://doi.org/10.1039/C5NR06295K

    Article  CAS  PubMed  Google Scholar 

  22. Griep MH, Sandoz-Rosado E, Tumlin TM, Wetzel E (2016) Enhanced graphene mechanical properties through ultrasmooth copper growth substrates. Nano Lett 16(3):1657–1662. https://doi.org/10.1021/acs.nanolett.5b04531

    Article  CAS  PubMed  Google Scholar 

  23. Wei W, Qu X (2012) Extraordinary physical properties of functionalized graphene. Small 8(14):2138–2151. https://doi.org/10.1002/smll.201200104

    Article  CAS  PubMed  Google Scholar 

  24. Karaman C, Karaman O, Atar N, Yola ML (2021) Sustainable electrode material for high-energy supercapacitor: biomass-derived graphene-like porous carbon with three-dimensional hierarchically ordered ion highways. Phys Chem Chem Phys 23(22):12807–12821. https://doi.org/10.1039/D1CP01726H

    Article  CAS  PubMed  Google Scholar 

  25. Rajabi M, Moradi O, Sillanpää M, Zare K, Asiri AM, Agarwal S, Gupta VK (2019) Removal of toxic chemical ethidium monoazide bromide using graphene oxide: Thermodynamic and kinetics study. J Mol Liq 293:111484. doi:https://doi.org/10.1016/j.molliq.2019.111484

    Article  CAS  Google Scholar 

  26. Singh P, Sonu, Raizada P, Sudhaik A, Shandilya P, Thakur P, Agarwal S, Gupta VK (2019) Enhanced photocatalytic activity and stability of AgBr/BiOBr/graphene heterojunction for phenol degradation under visible light. J Saudi Chem Soc 23(5):586–599. https://doi.org/10.1016/j.jscs.2018.10.005

    Article  CAS  Google Scholar 

  27. Karaman C, Karaman O, Yola BB, Ülker İ, Atar N, Yola ML (2021) A novel electrochemical aflatoxin B1 immunosensor based on gold nanoparticle-decorated porous graphene nanoribbon and Ag nanocube-incorporated MoS2 nanosheets. New J Chem 45(25):11222–11233. doi:https://doi.org/10.1039/D1NJ02293H

    Article  CAS  Google Scholar 

  28. Medetalibeyoğlu H, Beytur M, Manap S, Karaman C, Kardaş F, Akyıldırım O, Kotan G, Yüksek H, Atar N, Yola ML (2020) Molecular imprinted sensor including Au nanoparticles/polyoxometalate/two-dimensional hexagonal boron nitride nanocomposite for diazinon recognition. ECS J Solid State Sci Technol 9(10):101006. https://doi.org/10.1149/2162-8777/abbe6a

    Article  CAS  Google Scholar 

  29. Akça A, Karaman O, Karaman C (2021) Mechanistic insights into catalytic reduction of N2O by CO over Cu-embedded graphene: A density functional theory perspective. ECS J Solid State Sci Technol 10(4):041003. https://doi.org/10.1149/2162-8777/abf481

    Article  CAS  Google Scholar 

  30. Karaman C, Karaman O, Atar N, Yola ML (2021) Electrochemical immunosensor development based on core-shell high-crystalline graphitic carbon nitride@carbon dots and Cd0.5Zn0.5S/d-Ti3C2Tx MXene composite for heart-type fatty acid–binding protein detection. Microchim Acta 188(6):182. doi:https://doi.org/10.1007/s00604-021-04838-6

    Article  CAS  Google Scholar 

  31. Karaman C (2021) Orange peel derived-nitrogen and sulfur co-doped carbon dots: A nano-booster for enhancing ORR electrocatalytic performance of 3D graphene networks. Electroanalysis 33(5):1356–1369. https://doi.org/10.1002/elan.202100018

    Article  CAS  Google Scholar 

  32. Weaver CL, LaRosa JM, Luo X, Cui XT (2014) Electrically controlled drug delivery from graphene oxide nanocomposite films. ACS Nano 8(2):1834–1843. https://doi.org/10.1021/nn406223e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bandara PC, Perez JVD, Nadres ET, Nannapaneni RG, Krakowiak KJ, Rodrigues DF (2019) Graphene oxide nanocomposite hydrogel beads for removal of selenium in contaminated water. ACS Appl Polym Mater 1(10):2668–2679. https://doi.org/10.1021/acsapm.9b00612

    Article  CAS  Google Scholar 

  34. Shao W, Liu X, Min H, Dong G, Feng Q, Zuo S (2015) Preparation, characterization, and antibacterial activity of silver nanoparticle-decorated graphene oxide nanocomposite. ACS Appl Mater Interfaces 7(12):6966–6973. https://doi.org/10.1021/acsami.5b00937

    Article  CAS  PubMed  Google Scholar 

  35. Yang T, Li Q, Meng L, Wang X, Chen W, Jiao K (2013) Synchronous electrosynthesis of poly(xanthurenic acid)-reduced graphene oxide nanocomposite for highly sensitive impedimetric detection of DNA. ACS Appl Mater Interfaces 5(9):3495–3499. https://doi.org/10.1021/am400370s

    Article  CAS  PubMed  Google Scholar 

  36. Wallace PR (1947) The Band Theory of Graphite. Phys Rev 71(9):622–634. doi:https://doi.org/10.1103/PhysRev.71.622

    Article  CAS  Google Scholar 

  37. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669. https://doi.org/10.1126/science.1102896

    Article  CAS  PubMed  Google Scholar 

  38. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: Synthesis, properties, and applications. Adv Mater 22(35):3906–3924. https://doi.org/10.1002/adma.201001068

    Article  CAS  PubMed  Google Scholar 

  39. Compton OC, Nguyen ST (2010) Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials. Small 6(6):711–723. https://doi.org/10.1002/smll.200901934

    Article  CAS  PubMed  Google Scholar 

  40. Fang S, Lin Y, Hu YH (2019) Recent advances in green, safe, and fast production of graphene oxide via electrochemical approaches. ACS Sustain Chem Eng 7(15):12671–12681. https://doi.org/10.1021/acssuschemeng.9b02794

    Article  CAS  Google Scholar 

  41. Chen D, Feng H, Li J (2012) Graphene oxide: Preparation, functionalization, and electrochemical applications. Chem Rev 112(11):6027–6053. https://doi.org/10.1021/cr300115g

    Article  CAS  PubMed  Google Scholar 

  42. Ghosal K, Sarkar K (2018) Biomedical applications of graphene nanomaterials and beyond. ACS Biomater Sci Eng 4(8):2653–2703. https://doi.org/10.1021/acsbiomaterials.8b00376

    Article  CAS  PubMed  Google Scholar 

  43. Chang H, Wu H (2013) Graphene-based nanomaterials: Synthesis, properties, and optical and optoelectronic applications. Adv Func Mater 23(16):1984–1997. https://doi.org/10.1002/adfm.201202460

    Article  CAS  Google Scholar 

  44. Sajjad S, Khan Leghari SA, Iqbal A (2017) Study of graphene oxide structural features for catalytic, antibacterial, gas sensing, and metals decontamination environmental applications. ACS Appl Mater Interfaces 9(50):43393–43414. https://doi.org/10.1021/acsami.7b08232

    Article  CAS  PubMed  Google Scholar 

  45. Gong X, Liu G, Li Y, Yu DYW, Teoh WY (2016) Functionalized-graphene composites: Fabrication and applications in sustainable energy and environment. Chem Mater 28(22):8082–8118. https://doi.org/10.1021/acs.chemmater.6b01447

    Article  CAS  Google Scholar 

  46. Georgakilas V, Tiwari JN, Kemp KC, Perman JA, Bourlinos AB, Kim KS, Zboril R (2016) Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev 116(9):5464–5519. https://doi.org/10.1021/acs.chemrev.5b00620

    Article  CAS  PubMed  Google Scholar 

  47. Novoselov KS, Mishchenko A, Carvalho A, Castro Neto AH (2016) 2D materials and van der Waals heterostructures. Science 353(6298):aac9439. https://doi.org/10.1126/science.aac9439

    Article  CAS  PubMed  Google Scholar 

  48. Pei S, Cheng H-M (2012) The reduction of graphene oxide. Carbon 50(9):3210–3228. doi:https://doi.org/10.1016/j.carbon.2011.11.010

    Article  CAS  Google Scholar 

  49. Soldano C, Mahmood A, Dujardin E (2010) Production, properties and potential of graphene. Carbon 48(8):2127–2150. doi:https://doi.org/10.1016/j.carbon.2010.01.058

    Article  CAS  Google Scholar 

  50. Wan Y-J, Tang L-C, Gong L-X, Yan D, Li Y-B, Wu L-B, Jiang J-X, Lai G-Q (2014) Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Carbon 69:467–480. https://doi.org/10.1016/j.carbon.2013.12.050

    Article  CAS  Google Scholar 

  51. Medhekar NV, Ramasubramaniam A, Ruoff RS, Shenoy VB (2010) Hydrogen bond networks in graphene oxide composite paper: Structure and mechanical properties. ACS Nano 4(4):2300–2306. https://doi.org/10.1021/nn901934u

    Article  CAS  PubMed  Google Scholar 

  52. Wang H, Zhang C, Liu Z, Wang L, Han P, Xu H, Zhang K, Dong S, Yao J, Cui G (2011) Nitrogen-doped graphene nanosheets with excellent lithium storage properties. J Mater Chem 21(14):5430–5434. doi:https://doi.org/10.1039/C1JM00049G

    Article  CAS  Google Scholar 

  53. Tang L-C, Wan Y-J, Yan D, Pei Y-B, Zhao L, Li Y-B, Wu L-B, Jiang J-X, Lai G-Q (2013) The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60:16–27. doi:https://doi.org/10.1016/j.carbon.2013.03.050

    Article  CAS  Google Scholar 

  54. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565. doi:https://doi.org/10.1016/j.carbon.2007.02.034

    Article  CAS  Google Scholar 

  55. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814. https://doi.org/10.1021/nn1006368

    Article  CAS  PubMed  Google Scholar 

  56. Sheng Z-H, Shao L, Chen J-J, Bao W-J, Wang F-B, Xia X-H (2011) Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5(6):4350–4358. https://doi.org/10.1021/nn103584t

    Article  CAS  PubMed  Google Scholar 

  57. Zhu C, Guo S, Fang Y, Dong S (2010) Reducing sugar: New functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4(4):2429–2437. https://doi.org/10.1021/nn1002387

    Article  CAS  PubMed  Google Scholar 

  58. Yu D, Goh K, Wang H, Wei L, Jiang W, Zhang Q, Dai L, Chen Y (2014) Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage. Nat Nanotechnol 9(7):555–562. doi:https://doi.org/10.1038/nnano.2014.93

    Article  CAS  PubMed  Google Scholar 

  59. Yang S, Zhi L, Tang K, Feng X, Maier J, Müllen K (2012) Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions. Adv Func Mater 22(17):3634–3640. https://doi.org/10.1002/adfm.201200186

    Article  CAS  Google Scholar 

  60. Liang Y, Wang H, Zhou J, Li Y, Wang J, Regier T, Dai H (2012) Covalent hybrid of spinel manganese–cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J Am Chem Soc 134(7):3517–3523. https://doi.org/10.1021/ja210924t

    Article  CAS  PubMed  Google Scholar 

  61. Yola ML, Gupta VK, Eren T, Şen AE, Atar N (2014) A novel electro analytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin. Electrochim Acta 120:204–211. doi:https://doi.org/10.1016/j.electacta.2013.12.086

    Article  CAS  Google Scholar 

  62. Yola ML, Atar N, Eren T, Karimi-Maleh H, Wang S (2015) Sensitive and selective determination of aqueous triclosan based on gold nanoparticles on polyoxometalate/reduced graphene oxide nanohybrid. RSC Adv 5(81):65953–65962. https://doi.org/10.1039/C5RA07443F

    Article  CAS  Google Scholar 

  63. Liang Y, Li Y, Wang H, Dai H (2013) Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J Am Chem Soc 135(6):2013–2036. https://doi.org/10.1021/ja3089923

    Article  CAS  PubMed  Google Scholar 

  64. Wang H, Hao Q, Yang X, Lu L, Wang X (2010) A nanostructured graphene/polyaniline hybrid material for supercapacitors. Nanoscale 2(10):2164–2170. doi:https://doi.org/10.1039/C0NR00224K

    Article  CAS  PubMed  Google Scholar 

  65. Inbaraj BS, Sridhar K, Chen B-H (2021) Removal of polycyclic aromatic hydrocarbons from water by magnetic activated carbon nanocomposite from green tea waste. J Hazard Mater 415:125701. doi:https://doi.org/10.1016/j.jhazmat.2021.125701

    Article  CAS  PubMed  Google Scholar 

  66. Li W-W, Kong F-Y, Wang J-Y, Chen Z-D, Fang H-L, Wang W (2015) Facile one-pot and rapid synthesis of surfactant-free Au-reduced graphene oxide nanocomposite for trace arsenic (III) detection. Electrochim Acta 157:183–190. doi:https://doi.org/10.1016/j.electacta.2014.12.150

    Article  CAS  Google Scholar 

  67. Rahman MT, Kabir MF, Gurung A, Reza KM, Pathak R, Ghimire N, Baride A, Wang Z, Kumar M, Qiao Q (2019) Graphene oxide–silver nanowire nanocomposites for enhanced sensing of Hg2+. ACS Appl Nano Mater 2(8):4842–4851. https://doi.org/10.1021/acsanm.9b00789

    Article  CAS  Google Scholar 

  68. Xiong S, Ye S, Hu X, Xie F (2016) Electrochemical detection of ultra-trace Cu(II) and interaction mechanism analysis between amine-groups functionalized CoFe2O4/reduced graphene oxide composites and metal ion. Electrochim Acta 217:24–33. https://doi.org/10.1016/j.electacta.2016.09.060

    Article  CAS  Google Scholar 

  69. Gao C, Yu X-Y, Xu R-X, Liu J-H, Huang X-J (2012) AlOOH-reduced graphene oxide nanocomposites: One-pot hydrothermal synthesis and their enhanced electrochemical activity for heavy metal ions. ACS Appl Mater Interfaces 4(9):4672–4682. https://doi.org/10.1021/am3010434

    Article  CAS  PubMed  Google Scholar 

  70. Sun Y-F, Sun J-H, Wang J, Pi Z-X, Wang L-C, Yang M, Huang X-J (2019) Sensitive and anti-interference stripping voltammetry analysis of Pb(II) in water using flower-like MoS2/rGO composite with ultra-thin nanosheets. Anal Chim Acta 1063:64–74. doi:https://doi.org/10.1016/j.aca.2019.03.008

    Article  CAS  PubMed  Google Scholar 

  71. Zhao Q, Xu X, Xu Y, Gongsun K, Hu L, Yan S, Yao W, Yan Z (2020) Synergistically improved electrochemical performance and its practical application of graphene oxide stabilized nano Ag2S by one-pot homogeneous precipitation. Appl Surf Sci 501:144208. https://doi.org/10.1016/j.apsusc.2019.144208

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors (RS and LCP) acknowledge the support of ANID through the Project FONDECYT/Regular/ 1201314.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Devaraj Manoj, Rajendran Saravanan or Lorena Cornejo Ponce.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manoj, D., Saravanan, R. & Ponce, L.C. Recent Strategies on Hybrid Inorganic-Graphene Materials for Enhancing the Electrocatalytic Activity Towards Heavy Metal Detection. Top Catal 65, 604–614 (2022). https://doi.org/10.1007/s11244-021-01475-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-021-01475-4

Keywords

Navigation