Skip to main content
Log in

Implementation of a quantum algorithm to estimate the energy of a particle in a finite square well potential on IBM quantum computer

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we implement a quantum algorithm—on IBM quantum devices, IBM QASM simulator and PPRC computer cluster—to find the energy values of the ground state and the first excited state of a particle in a finite square-well potential. We use the quantum phase estimation technique and the iterative one to execute the program on PPRC cluster and IBM devices, respectively. Our results obtained from executing the quantum circuits on the IBM classical devices show that our circuits succeed at simulating the system. However, duo to scattered results, we execute only the iterative phase estimation part of the circuit on the 5 qubit quantum devices to reduce the circuit size and obtain low-scattered results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Plasma Physics Research Center.

  2. This computer includes 16 nodes and each node is equipped with two Intel Xeon X5365 CPUs. We have executed the program on the two nodes in a serial manner.

References

  1. R.P. Feynman, Simulating physics with computers. Int. J. Theor. Phys. 21(6), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  2. Y. Manin, Computable and Uncomputable (Sovetskoye Radio Press, Moscow, 1980). (in Russian)

  3. D.A. Lidar, H. Wang, Calculating the thermal rate constant with exponential speedup on a quantum computer. Phys. Rev. E 59, 2429–2438 (1999)

    Article  ADS  Google Scholar 

  4. A. Aspuru-Guzik, Simulated quantum computation of molecular energies. Science 309(5741), 1704–1707 (2005)

    Article  ADS  Google Scholar 

  5. B.P. Lanyon, J.D. Whitfield, G.G. Gillett, M.E. Goggin, M.P. Almeida, I. Kassal, J.D. Biamonte, M. Mohseni, B.J. Powell, M. Barbieri, A. Aspuru-Guzik, A.G. White, Towards quantum chemistry on a quantum computer. Nat. Chem. 2, 106–111 (2010)

    Article  Google Scholar 

  6. D. Jiangfeng, X. Nanyang, X. Peng, P. Wang, W. Sanfeng, L. Dawei, NMR implementation of a molecular hydrogen quantum simulation with adiabatic state preparation. Phys. Rev. Lett. 104, 030502 (2010)

    Article  Google Scholar 

  7. I. Kassal, S.P. Jordan, P.J. Love, M. Mohseni, A. Aspuru-Guzik, Polynomial-time quantum algorithm for the simulation of chemical dynamics. Proc. Natl. Acad. Sci. 105(48), 18681–18686 (2008)

    Article  ADS  Google Scholar 

  8. A.Y. Smirnov, S. Savel’ev, L.G. Mourokh, F. Nori, Modelling chemical reactions using semiconductor quantum dots. Europhys. Lett. (EPL) 80, 07 (2007)

    Google Scholar 

  9. M. Reiher, N. Wiebe, K.M. Svore, D. Wecker, M. Troyer, Elucidating reaction mechanisms on quantum computers. Proc. Natl. Acad. Sci. 114(29), 7555–7560 (2017)

    Article  ADS  Google Scholar 

  10. F. Yamaguchi, Y. Yamamoto, Quantum simulation of the t-J model. Superlattices Microstruct. 32(4), 343–345 (2002). (Papers from the 8th International Symposium of Advanced Physical Fields on Advanced Materials for Quantum Computing)

  11. D.A. Lidar, O. Biham, Simulating Ising spin glasses on a quantum computer. Phys. Rev. E 56, 3661–3681 (1997)

    Article  ADS  Google Scholar 

  12. A.L. Rakhmanov, A.M. Zagoskin, S. Savel’ev, F. Nori, Quantum metamaterials: electromagnetic waves in a Josephson qubit line. Phys. Rev. B 77, 144507 (2008)

    Article  ADS  Google Scholar 

  13. W. Hofstetter, T. Qin, Quantum simulation of strongly correlated condensed matter systems. J. Phys. B At. Mol. Opt. Phys. 51, 12 (2017)

    Google Scholar 

  14. R. Barends, L. Lamata, J. Kelly, L. Garcia-Alvarez, A.G. Fowler, A. Megrant, E. Jeffrey, T.C. White, D. Sank, J.Y. Mutus, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, I.-C. Hoi, C. Neill, P.J.J. O’Malley, C. Quintana, J.M. Martinis, Digital quantum simulation of fermionic models with a superconducting circuit. Nat. Commun. 6, 7654 (2015)

    Article  ADS  Google Scholar 

  15. S.P. Jordan, K.S.M. Lee, J. Preskill, Quantum algorithms for quantum field theories. Science 336(6085), 1130–1133 (2012)

    Article  ADS  Google Scholar 

  16. T. Byrnes, Y. Yamamoto, Simulating lattice gauge theories on a quantum computer. Phys. Rev. A 73, 022328 (2006)

    Article  ADS  Google Scholar 

  17. M. Arndt, T. Juffmann, V. Vedral, Quantum physics meets biology. HFSP J. 3(6), 386–400 (2009). (PMID: 20234806)

  18. R.Y. Li, R. Di Felice, R. Rohs, D. Lidar, Quantum annealing versus classical machine learning applied to a simplified computational biology problem. NPJ Quantum Inf. 4, 14 (2018)

    Article  ADS  Google Scholar 

  19. IBM Q Experience. https://www.research.ibm.com/ibm-q/

  20. D. Alsina, J.I. Latorre, Experimental test of Mermin inequalities on a five-qubit quantum computer. Phys. Rev. A 94, 012314 (2016)

    Article  ADS  Google Scholar 

  21. Y. Wang, Y. Li, Z. Yin, B. Zeng, 16-Qubit IBM universal quantum computer can be fully entangled. NPJ Quantum Inf. 4(1), 1–6 (2018)

    Article  ADS  Google Scholar 

  22. S.J. Devitt, Performing quantum computing experiments in the cloud. Phys. Rev. A 94, 032329 (2016)

    Article  ADS  Google Scholar 

  23. B.K. Behera, S. Seth, A. Das, P.K. Panigrahi, Demonstration of entanglement purification and swapping protocol to design quantum repeater in IBM quantum computer. Quantum Inf. Process. 18(4), 1–13 (2019)

    MATH  Google Scholar 

  24. A. Zulehner, A. Paler, R. Wille, An efficient methodology for mapping quantum circuits to the IBM QX architectures. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 38, 1226–1236 (2018)

    Article  Google Scholar 

  25. B.K. Behera, T. Reza, A. Gupta, P.K. Panigrahi, Designing quantum router in IBM quantum computer. Quantum Inf. Process. 18(11), 1–13 (2019)

    Article  Google Scholar 

  26. B.K. Behera, P.K. Panigrahi, A simulational model for witnessing quantum effects of gravity using IBM quantum computer. Quantum Inf. Process. 19(4), 1–2 (2020)

    Google Scholar 

  27. D. Joy, M. Sabir, B.K. Behera, P.K. Panigrahi, Implementation of quantum secret sharing and quantum binary voting protocol in the IBM quantum computer. Quantum Inf. Process. 19(1), 1–20 (2019)

    MathSciNet  Google Scholar 

  28. M. Swain, A. Rai, B.K. Behera, P.K. Panigrahi, Experimental demonstration of the violations of Mermin’s and Svetlichny’s inequalities for W and GHz states. Quantum Inf. Process. 18(7), 1–11 (2019)

    Article  ADS  Google Scholar 

  29. A. Maitra, J. Samuel, S. Sinha, Rapid communication likelihood theory in a quantum world: tests with quantum coins and computers. Pramana 94(1), 1–6 (2020)

    Article  Google Scholar 

  30. G.A. Bochkin, S.I. Doronin, E.B. Fel’dman, A.I. Zenchuk, Calculation of \(\pi \) on the IBM quantum computer and the accuracy of one-qubit operations. Quantum Inf. Process. 19, 1–6 (2020)

    Article  MathSciNet  Google Scholar 

  31. A. Kole, S. Hillmich, K. Datta, R. Wille, I. Sengupta, Improved mapping of quantum circuits to IBM QX architectures. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39(10), 2375–2383 (2020)

    Article  Google Scholar 

  32. Qiskit’s Documentation. https://qiskit.org/documentation/index.html

  33. Device Specifications. https://github.com/Qiskit/qiskit-backend-information/tree/master/backends

  34. K. Nakao, A. Matsuyama, Quantum circuits for solving one-dimensional Schrödinger equations (2009). arXiv:0907.3343 [quant-ph]

  35. Z. Christof, Simulating quantum systems on a quantum computer. Proc. R. Soc. Lond. A 454 (1998). https://doi.org/10.1098/rspa.1998.0162

  36. H.F. Trotter, On the product of semi-groups of operators. Proc. Am. Math. Soc. 10(4), 545–551 (1959)

    Article  MathSciNet  Google Scholar 

  37. G. Benenti, G. Strini, Quantum simulation of the single-particle Schrodinger equation. Am. J. Phys. 76(7), 657–662 (2008)

    Article  ADS  Google Scholar 

  38. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information, 10th edn. (Cambridge University Press, Cambridge, 2010)

    Book  Google Scholar 

  39. C.J. O’Loan, Iterative phase estimation. J. Phys. A Math. Theor. 43(1), 015301 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  40. GitHub, QISKit Tutorials: Summary of Quantum Operations. https://github.com/Qiskit/qiskit-tutorials/blob/master/qiskit/terra/summary_of_quantum_operations.ipynb

  41. V.V. Shende, S.S. Bullock, I.L. Markov, Synthesis of quantum-logic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25(6), 1000–1010 (2006)

    Article  Google Scholar 

  42. R. Somma, G. Ortiz, J.E. Gubernatis, E. Knill, R. Laflamme, Simulating physical phenomena by quantum networks. Phys. Rev. A 65, 042323 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahnoosh Rafibakhsh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shokri, S., Rafibakhsh, S., Pooshgan, R. et al. Implementation of a quantum algorithm to estimate the energy of a particle in a finite square well potential on IBM quantum computer. Eur. Phys. J. Plus 136, 762 (2021). https://doi.org/10.1140/epjp/s13360-021-01743-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01743-y

Navigation