Skip to main content
Log in

Deconfinement and degrees of freedom in pp and \(A-A\) collisions at LHC energies

  • Letter
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We present the extraction of the temperature by analyzing the charged particle transverse momentum spectra in lead–lead (Pb–Pb) and proton–proton (pp) collisions at LHC energies from the ALICE Collaboration using the Color String Percolation Model (CSPM). From the measured energy density \({\varvec{\varepsilon }}\) and the temperature T the dimensionless quantity \({\varvec{\varepsilon }/}T^{4}\) is obtained to get the degrees of freedom (DOF), \({\varvec{\varepsilon }}/T^{4} = \hbox {DOF} \,{ \pi ^{2}}/30\). We observe for the first time a two-step behavior in the increase of DOF, characteristic of deconfinement, above the hadronization temperature at temperature \(\sim \) 210 MeV for both Pb–Pb and pp collisions and a sudden increase to the ideal gas value of \(\sim 47\) corresponding to three quark flavors in the case of Pb–Pb collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Published data from ALICE Collaboration was used.]

References

  1. W. Busza, K. Rajagopal, W. van der Schee, Heavy ion collisions: the big picture, and the big questions. Ann. Rev. Nucl. Part. Sci. 68, 339 (2018)

    Article  ADS  Google Scholar 

  2. S. Acharya et al. (ALICE Collaboration), Charged particle production as a function of multiplicity and transverse spherocity in pp collisions at \(\sqrt{s} = 5.02\) and 13 TeV. Eur. Phys. J. C 79, 857 (2019)

  3. S. Acharya et al. (ALICE Collaboration), Transverse momentum spectra and nuclear modification factors of charged particles in pp, p-Pb and Pb–Pb collisions at the LHC. JHEP 11, 013 (2018)

  4. M.A. Braun, J. Dias de Deus, A.S. Hirsch, C. Pajares, R.P. Scharenberg, B.K. Srivastava, Deconfinement and clustering of color sources in nuclear collisions. Phys. Rep. 599, 1 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  5. R.P. Scharenberg, B.K. Srivastava, A.S. Hirsch, Percolation of color sources and the equation of state of QGP in central Au–Au collisions at \(\sqrt{s_{NN}}=200\) GeV. Eur. Phys. J. C 71, 1510 (2011)

    Article  ADS  Google Scholar 

  6. J. Dias de Deus, A.S. Hirsch, C. Pajares, R.P. Scharenberg, B.K. Srivastava, Clustering of color sources and the shear viscosity of the QGP in heavy ion collisions at RHIC and LHC energies. Eur. Phys. J. C 72, 2123 (2012)

    Article  ADS  Google Scholar 

  7. B.K. Srivastava, Percolation approach to initial stage effects in high energy collisions. Nucl. Phys. A 926, 142 (2014)

    Article  ADS  Google Scholar 

  8. J. Dias de Deus, A.S. Hirsch, C. Pajares, R.P. Scharenberg, B.K. Srivastava, Transport coefficient to trace anomaly in the clustering of color sources approach. Phys. Rev. C 93, 024915 (2016)

    Article  ADS  Google Scholar 

  9. R.P. Scharenberg, B.K. Srivastava, C. Pajares, Exploring the initial stage of high multiplicity proton-proton collisions by determining the initial temperature of quark-gluon plasma. Phys. Rev. D 100, 114040 (2019)

    Article  ADS  Google Scholar 

  10. C. Bierlich, G. Gustafson, L. Lonnbald, A. Tarasov, Effects of overlapping strings in \( {pp}\) collisions. JHEP 03, 58 (2015)

    Google Scholar 

  11. C. Bierlich, G. Gustafson, L. Lonnbald, Collectivity without plasma in hadronic collisions. Phys. Lett. B 779, 58 (2018)

    Article  ADS  Google Scholar 

  12. A. Ortiz Velasquez, P. Christiansen, E. Cuautle Flores, I.A. Maldonado, G. Paic, Color reconnection and flowlike patterns in \(pp\) collisions. Phys. Rev. Lett. 111, 042001 (2013)

    Article  ADS  Google Scholar 

  13. M. Asakawa, S.A. Bass, B. Muller, Center domains and their phenomenological consequences. Phys. Rev. Lett. 110, 202301 (2013)

    Article  ADS  Google Scholar 

  14. A. Dumitru, T. Lappi, Y. Nara, Structure of longitudinal chromomagnetic fields in high energy collisions. Phys. Lett. B 734, 7 (2014)

    Article  ADS  Google Scholar 

  15. A. Bazavov, P. Petreczky, J.H. Weber, Equation of state in 2+1 flavor QCD at high temperatures. Phys. Rev. Lett. 97, 014510 (2018)

    ADS  Google Scholar 

  16. M.B. Isichenko, Statistical topography and transport in random media. Rev. Mod. Phys. 64, 961 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  17. M.A. Braun, C. Pajares, Implications of color-string percolation on multiplicities, correlations, and the transverse momentum. Eur. Phys. J. C 16, 349 (2000)

    Article  ADS  Google Scholar 

  18. M.A. Braun, F. del Moral, C. Pajares, Percolation of strings and the relativistic energy data on multiplicity and transverse momentum distributions. Phys. Rev. C 65, 024907 (2002)

    Article  ADS  Google Scholar 

  19. C.Y. Wong, Introduction to high energy heavy ion collisions (World scientific company, Singapore, 1994), p. 289

    Book  Google Scholar 

  20. R. Ryblewski, W. Florkowski, Equilibration of anisotropic quark-gluon plasma produced by decays of color flux tubes. Phys. Rev. D 88, 034028 (2013)

    Article  ADS  Google Scholar 

  21. M. Ruggieri et al., Modelling the early stages of relativistic heavy ion collisions: coupling relativistic transport theory to decaying color-electric flux tubes. Phys. Rev. C 92, 064904 (2015)

    Article  ADS  Google Scholar 

  22. L. McLerran, R. Venugopalan, Computing quark and gluon distribution functions for very large nuclei. Phys. Rev. D 49, 2233 (1994)

    Article  ADS  Google Scholar 

  23. J. Dias de Deus, C. Pajares, String percolation and the Glasma. Phys. Lett. B 695, 211 (2011)

    Article  ADS  Google Scholar 

  24. M.A. Braun, C. Pajares, V.V. Vecherinn, Nucl. Phys. A 906, 4 (2013)

    Article  ADS  Google Scholar 

  25. M.A. Braun, C. Pajares, V.V. Vecherinn, Ridge from strings. Eur. Phys. A 51, 44 (2015)

    Article  ADS  Google Scholar 

  26. M.A. Braun, C. Pajares, \(p_{t}\) dependence of the flow coefficients for \(pp\) collisions in the color string scenario: Monte Carlo simulations. Eur. Phys. A 54, 185 (2018)

    Article  ADS  Google Scholar 

  27. M.A. Braun, C. Pajares, Elliptic and triangular flows in \(d\)Au collisions at 200 GeV in the fusing color string model. Eur. Phys. A 56, 41 (2020)

    Article  ADS  Google Scholar 

  28. L. McLerran, M. Praszalowicz, B. Schenke, Transverse momentum of Protons, Pions and Kaons in high multiplicity pp and pA collisions: evidence for the color glass Condensate \(? \). Nucl. Phys. A 916, 210 (2013)

    Article  ADS  Google Scholar 

  29. L. McLerran, P. Tribedy, Intrinsic fluctuations of the proton saturation momentum scale in high multiplicity p+p collisions. Nucl. Phys. A 945, 216 (2016)

    Article  ADS  Google Scholar 

  30. P. Castorina et al., Universality in hadronic and nuclear collisions at high energy. Phys. Rev. C 101, 054902 (2020)

    Article  ADS  Google Scholar 

  31. C. Loizides, Modelling of high-energy nuclear collisions at the subnucleon level. Phys. Rev. C 94, 024914 (2016)

    Article  ADS  Google Scholar 

  32. J. Dias de Deus, C. Pajares, Percolation of color sources and critical temperature. Phys. Lett. B 642, 455 (2006)

    Article  ADS  Google Scholar 

  33. A. Bialas, Fluctuations of the string tension and transverse mass distribution. Phys. Lett. B 466, 301 (1999)

    Article  ADS  Google Scholar 

  34. H.G. Dosch, Gluon condensate and effective linear potential. Phys. Lett. B 190, 177 (1987)

    Article  ADS  Google Scholar 

  35. F. Becattini, P. Castorina, A. Milov, H. Satz, A comparative analysis of statistical hadron production. Eur. Phys. J. C 66, 377 (2010)

  36. P. Castorina, D. Kharzeev, H. Satz, Thermal hadronization and Hawking-Unruh radiation in QCD. Eur. Phys. J. C 52, 187 (2007)

    Article  ADS  Google Scholar 

  37. A.A. Bylinkin, D.E. Kharzeev, A.A. Rostovtsev, The origin of thermal componenet in the transverse momentum spectra in high energy hadronic processes. Int. J. Mod. Phys. E 23, 1450083 (2014)

    Article  ADS  Google Scholar 

  38. H. Satz, Extreme states of matter in strong intercation physics: Lecture Notes in Physics, vol. 945 (Springer International Publishing AG, Berlin, 2018)

    Book  MATH  Google Scholar 

  39. S.W. Hawking, Particle creation by black holes. Math. Phys. 43, 199 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. W.G. Unruh, Notes on black-hole evaporation. Phys. Rev. D 14, 870 (1976)

    Article  ADS  Google Scholar 

  41. J.D. Bjorken, Highly relativistic collisions : the central rapidity region. Phys. Rev. D 27, 140 (1983)

    Article  ADS  Google Scholar 

  42. J. Schwinger, J. Gauge variance and mass II. Phys. Rev. 128, 2425 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. A. Bazavov, T. Bhattacharya, C. DeTar, H.-T. Ding, S. Gottlieb, R. Gupta et al., (HotQCD Collaboration), Equation of state in (2+1) flavor QCD. Phys. Rev. D 90, 094503 (2014)

  44. B. Borsanyi et al., (Wuppertal Collaboration), Full result for the QCD equation of state with 2+1 flavors. Phys. Lett. B 730, 99 (2014)

  45. P. Castorina, M. Mannarelli, Effective degrees of freedom of the quark-gluon plasma. Phys. Lett. B 644, 336 (2007)

    Article  ADS  Google Scholar 

  46. P. Castorina, M. Mannarelli, Effective degrees of freedom and gluon condensation in the high temperature deconfined phase. Phys. Rev. C 75, 054901 (2007)

    Article  ADS  Google Scholar 

  47. H.T. Ding et al., Chiral phase structure of three flavor QCD in a background magnetic field. Phys. Rev. D 102, 054505 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  48. A. Alexandru, I. Horváth, Possible new phase of thermal QCD. Phys. Rev. D 100, 094507 (2019)

    Article  ADS  Google Scholar 

  49. Three regimes of QCD, L. Ya. Glozman, Three regimes of QCD , arXiv:1907.018201

Download references

Acknowledgements

A. M. acknowledges the post-doctoral fellowship of DGAPA UNAM. Partial support was received by DGAPA-PAPIIT IN109817 and CONACYT A1-S-16215 projects. A. M. also thanks the Hungarian National Research, Development and Innovation Office (NKFIH) under the contract numbers OTKA K120660, NKFIH 2019-2.1.11-T ET-2019-00078, and 2019-2.1.11-T ET-2019-00050. C. P. thanks the grant Maria de Maeztu Unit of excellence MDM-2016-0682 of Spain, the support of Xunta de Galicia under the project ED431C 2017 and project FPA 2017-83814 of Ministerio de Ciencia e Innovacion of Spain and FEDER. GP acknowledges the DGAPA sabatical fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. K. Srivastava.

Additional information

Communicated by Silvia Masciocchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, A.N., Paić, G., Pajares, C. et al. Deconfinement and degrees of freedom in pp and \(A-A\) collisions at LHC energies. Eur. Phys. J. A 57, 245 (2021). https://doi.org/10.1140/epja/s10050-021-00552-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00552-2

Navigation