Skip to main content
Log in

Oxidation of hexacyanoferrate(II) ion by hydrogen peroxide: evidence of free radical intermediacy

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The redox reaction between hexacyanoferrate(II) ion as the reducing agent and hydrogen peroxide as the oxidizing one, in slightly acid (pH 4.36–6.65) aqueous solutions containing phosphate ions, has been studied by means of an UV–Vis spectrophotometer monitoring the formation of Fe(III) at 420 nm. The initial hydrolysis of the Fe(II)-cyanide complex reactant to yield a pentacyanoaquaferrate(II) intermediate, as well as a decrease in the solution pH (acid catalysis), had both a positive effect on the reaction rate, whereas an increase in the concentrations of Fe(III), phosphate and chloride ions, and d-mannitol had a negative effect (inhibition). A computer program, specifically designed for this purpose, allowed arriving at a complex eight-coefficient experimental rate law by application of the initial rate method, accounting for the dependences of the reaction rate on the concentrations of Fe(II), H2O2 and Fe(III). The reaction was characterized by a low value of the apparent activation energy (28.9 ± 2.7 kJ mol−1). Finally, a multi-step reaction mechanism, involving the participation of a penta-coordinated Fe(II) complex, and hydroxyl, superoxide and other free radicals as intermediates, has been proposed. This mechanism was supported by the available experimental information and confirmed by numerical simulations performed via the fourth order Runge–Kutta integration method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1
Fig. 10

Similar content being viewed by others

References

  1. Harman D (2006) Free radical theory of aging: an update increasing the functional lifespan. Ann N Y Acad Sci 1067:10–21

    Article  CAS  PubMed  Google Scholar 

  2. Boveris A (1998) Biochemistry of free radicals: from electrons to tissues. Medicina 58:350–356

    CAS  PubMed  Google Scholar 

  3. Valdez LB, Lores Arnaiz S, Bustamante J, Alvarez S, Costa LE, Boveris A (2000) Free radical chemistry in biological systems. Biol Res 3:65–70

    Google Scholar 

  4. Chan PH (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21:2–14

    Article  CAS  PubMed  Google Scholar 

  5. Perez-Benito JF (2006) A study of the cytochrome c-hydrogen peroxide reaction. Collect Czech Chem Commun 71:1588–1610

    Article  CAS  Google Scholar 

  6. Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science 273:59–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Halliwell B, Gutteridge JMC (2015) Free radicals in biology and medicine. Oxford University Press, Oxford, p 440

    Book  Google Scholar 

  8. Kwak MS, Rhee WJ, Lee YJ, Kim HS, Kim YH, Kwon MK, Shin JS (2021) Reactive oxygen species induce Cys106-mediated anti-parallel HMGB1 dimerization that protects against DNA damage. Redox Biol 40:101858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ames BN (1983) Dietary carcinogens and anticarcinogens—oxygen radicals and degenerative diseases. Science 221:1256–1264

    Article  CAS  PubMed  Google Scholar 

  10. Cortopassi G, Wang E (1995) Modeling the effects of age-related mtDNA mutation accumulation; complex I deficiency, superoxide and cell death. Biochim Biophys Acta 1271:171–176

    Article  PubMed  Google Scholar 

  11. Al-Ajlouni AM, Espenson JH, Bakac A (1993) Reaction of hydrogen peroxide with the oxochromium(IV) ion by hydride transfer. Inorg Chem 32:3162–3165

    Article  CAS  Google Scholar 

  12. Winterbourn CC (2013) The biological chemistry of hydrogen peroxide. Methods Enzymol 528:3–25

    Article  CAS  PubMed  Google Scholar 

  13. Illes E, Patra SG, Marks V, Mizrahi A, Meyerstein D (2020) The FeII(citrate) Fenton reaction under physiological conditions. J Inorg Biochem 206:111018

    Article  CAS  PubMed  Google Scholar 

  14. Yu Z, Thompson Z, Behnke SL, Fenk KD, Huang D, Shafaat HS, Cowan JA (2020) Metalloglycosidase mimics: oxidative cleavage of saccharides promoted by multinuclear copper complexes under physiological conditions. Inorg Chem 59:11218–11222

    Article  CAS  PubMed  Google Scholar 

  15. Rush JD, Koppenol WH (1986) Oxidizing intermediates in the reaction of ferrous EDTA with hydrogen peroxide. J Biol Chem 261:6730–6733

    Article  CAS  PubMed  Google Scholar 

  16. Rush JD, Koppenol WH (1987) The reaction between ferrous polyaminocarboxylate complexes and hydrogen peroxide: an investigation of the reaction intermediates by stopped flow spectrophotometry. J Inorg Biochem 29:199–215

    Article  CAS  PubMed  Google Scholar 

  17. Rahhal S, Richter HW (1988) Reduction of hydrogen peroxide by the ferrous iron chelate of diethylenetriamine-N, N, N’, N", N"-pentaacetate. J Am Chem Soc 110:3126–3133

    Article  CAS  Google Scholar 

  18. Masarwa M, Cohen H, Meyerstein D, Hickman DL, Bakac A, Espenson JH (1988) Reactions of low-valent transition-metal complexes with hydrogen peroxide. Are they “Fenton-like” or not? 1. The case of Cu+aq and Cr2+aq. J Am Chem Soc 110:4293–4297

    Article  CAS  Google Scholar 

  19. Yamazaki I, Piette LH (1991) EPR spin-trapping study on the oxidizing species formed in the reaction of the ferrous ion with hydrogen peroxide. J Am Chem Soc 113:7588–7593

    Article  CAS  Google Scholar 

  20. Sawyer DT, Kang C, Llobet A, Redman C (1993) Fenton reagents (1:1 FeIILx/HOOH) react via [LxFeIIOOH(BH+)] as hydroxylases (RH → ROH), not as generators of free hydroxyl radicals (HO.). J Am Chem Soc 115:5817–5818

    Article  CAS  Google Scholar 

  21. Hage JP, Llobet A, Sawyer DT (1995) Aromatic hydroxylation by Fenton reagents {reactive intermediate [Lx+FeIIIOOH(BH+)], not free hydroxyl radical (HO.)}. Bioorg Med Chem 3:1383–1388

    Article  CAS  PubMed  Google Scholar 

  22. Sawyer DT, Sobkowiak A, Matsushita T (1996) Metal [MLx; M = Fe, Cu Co, Mn]/hydroperoxide-induced activation of dioxygen for the oxygenation of hydrocarbons: oxygenated Fenton chemistry. Acc Chem Res 29:409–416

    Article  CAS  Google Scholar 

  23. Kremer ML (1999) Mechanism of the Fenton reaction. Evidence for a new intermediate. Phys Chem Chem Phys 1:3595–3605

    Article  CAS  Google Scholar 

  24. Kremer ML (2003) The Fenton reaction. Dependence of the rate on pH. J Phys Chem A 107:1734–1741

    Article  CAS  Google Scholar 

  25. Rachmilovich-Calis S, Masarwa A, Meyerstein N, Meyerstein D (2005) The Fenton reaction in aerated aqueous solutions revisited. Eur J Inorg Chem 14:2875–2880

    Article  CAS  Google Scholar 

  26. Kremer ML (2017) Strong inhibition of the Fe3+ + H2O2 reaction by ethanol: evidence against the free radical theory. Prog React Kinet Mech 42:397–413

    Article  CAS  Google Scholar 

  27. Walling C (1998) Intermediates in the reactions of Fenton type reagents. Acc Chem Res 31:155–157

    Article  CAS  Google Scholar 

  28. Marusawa H, Ichikawa K, Narita N, Murakami H, Ito K, Tezuka T (2002) Hydroxyl radical as a strong electrophilic species. Bioorg Med Chem 10:2283–2290

    Article  CAS  PubMed  Google Scholar 

  29. Perez-Benito JF (2004) Iron(III)-hydrogen peroxide reaction: kinetic evidence of a hydroxyl-mediated chain mechanism. J Phys Chem A 108:4853–4858

    Article  CAS  Google Scholar 

  30. Perez-Benito JF (2004) Reaction pathways in the decomposition of hydrogen peroxide catalyzed by copper(II). Inorg Biochem 98:430–438

    Article  CAS  Google Scholar 

  31. Zeng Q, Wang X, Liu X, Huang L, Hu J, Chu R, Tolic N, Dong H (2020) Mutual interactions between reduced Fe-bearing clay minerals and humic acids under dark, oxygenated conditions: hydroxyl radical generation and humic acid transformation. Environ Sci Technol 54:15013–15023

    Article  CAS  PubMed  Google Scholar 

  32. Sun X, Gu X, Lyu S (2021) The performance of chlorobenzene degradation in groundwater: comparison of hydrogen peroxide, nanoscale calcium peroxide and sodium percarbonate activated with ferrous iron. Water Sci Technol 83:344–357

    Article  CAS  PubMed  Google Scholar 

  33. Chen H, Fang C, Gao X, Jiang G, Wang X, Sun S, Wu W, Wu Z (2021) Sintering- and oxidation-resistant ultrasmall Cu(I)/(II) oxides supported on defect-rich mesoporous alumina microspheres boosting catalytic ozonation. J Colloid Interface Sci 581:964–978

    Article  CAS  PubMed  Google Scholar 

  34. Barb WG, Baxendale JH, George P, Hargrave KR (1955) Reactions of ferrous and ferric ions with hydrogen peroxide. III. Reactions in the presence of 2,2’-bipyridine. Trans Faraday Soc 51:935–946

    Article  CAS  Google Scholar 

  35. Walling C, Kurz M, Schugar HJ (1970) The iron(III)-ethylenediaminetetraacetic acid-peroxide system. Inorg Chem 9:931–937

    Article  CAS  Google Scholar 

  36. Walling C, Partch RE, Weil T (1975) Kinetics of the descomposition of hydrogen peroxide catalyzed by ferric ethylenediaminetetraacetate complex. Proc Nat Acad Sci 72:140–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Francis KC, Cummins D, Oakes J (1985) Kinetic and structural investigations of [FeIII(EDTA)]-[EDTA=Ethylenediaminetetra-acetate(4-)] catalysed decomposition of hydrogen peroxide. J Chem Soc Dalton Trans 3:493–501

    Article  Google Scholar 

  38. Amina, Si X, Wu K, Si Y, Yousaf B (2018) Synergistic effects and mechanisms of hydroxyl radical-mediated oxidative degradation of sulfamethoxazole by Fe(II)-EDTA catalyzed calcium peroxide: implications for remediation of antibiotic-contaminated water. Chem Eng J 353:80–91

    Article  CAS  Google Scholar 

  39. Bray DG, Thompson RC (1994) Trace metal ion catalysis in the oxidation of Fe(CN)64- by H2O2. Inorg Chem 33:905–909

    Article  CAS  Google Scholar 

  40. Davies G, Garafalo AR (1976) Stoichiometry and kinetics of the substitution-controlled oxidation of pentacyanoaquoiron(II) species by hydrogen peroxide and by tert-butyl hydroperoxide in aqueous sodium perchlorate solution. Inorg Chem 15:1101–1106

    Article  CAS  Google Scholar 

  41. Karunakaran C, Muthukumaran B (1996) Kinetic evidence for peroxo complex formation in perborate or hydrogen peroxide oxidation of hexacyanoferrate(II). Pol J Chem 70:79–82

    CAS  Google Scholar 

  42. Kislenko VN, Oliinyk LP (2003) Kinetics of hydrogen peroxide decomposition in guaiacol solution, catalyzed by hexacyanoferrate(II). Russ J Gen Chem 73:114–118

    Article  CAS  Google Scholar 

  43. Rabai G (1991) pH oscillation in the closed system of H2O2-[Fe(CN)6]4-acetonitrile water. J Chem Soc Chem Commun 16:1083–1084

    Article  Google Scholar 

  44. Katafias A, Impert O, Kita P (2008) Hydrogen peroxide as a reductant of hexacyanoferrate(III) in alkaline solutions: kinetic studies. Transition Met Chem 33:1041–1046

    Article  CAS  Google Scholar 

  45. Baxendale JH (1952) Decomposition of hydrogen peroxide by catalysts in homogeneous aqueous solution. Adv Catal 4:31–86

    CAS  Google Scholar 

  46. Domingo PI, Garcia B, Leal JM (1989) Acid-base behaviour of the ferricyanide ion in perchloric acid media. Spectrophotometric and kinetic study. Can J Chem 68:228–235

    Article  Google Scholar 

  47. Perez-Benito JF, Arias C, Amat E (1995) A kinetic study of the reactions of cisplatin with biological thiols. New J Chem 19:1089–1094

    CAS  Google Scholar 

  48. Laidler KJ (1987) Chemical kinetics. Harper Collins, New York, p 30

    Google Scholar 

  49. Beck MT (1987) Critical survey of stability constants of cyano complexes. Pure Appl Chem 59:1703–1720

    Article  CAS  Google Scholar 

  50. Kuhn DD, Young TC (2005) Photolytic degradation of hexacyanoferrate(II) in aqueous media: the determination of the degradation kinetics. Chemosphere 60:1222–1230

    Article  CAS  PubMed  Google Scholar 

  51. Bell S, Foster G, Fuller MW, Hughes D, Le Brocq KMF, Leslie E, Wilson IR (1986) Spectrophotometric measurement of rates of hexacyanoferrate(III) reactions. Int J Chem Kinet 18:651–653

    Article  CAS  Google Scholar 

  52. Perez-Benito JF, Arias C, Brillas E (1990) Comment on monitoring of hexacyanoferrate(III) reactions by spectrophotometric methods. Int J Chem Kinet 22:95–97

    Article  CAS  Google Scholar 

  53. Bruice PY (2016) Organic chemistry. Pearson, Upper Saddle River, New Jersey, p 404

    Google Scholar 

  54. Luo L, Yao Y, Gong F, Huang ZF, Lu WY, Chen WX, Zhang L (2016) Drastic enhancement on Fenton oxidation of organic contaminants by accelerating Fe(II)/Fe(III) cycle with L-cysteine. RSC Adv 6:47661–47668

    Article  CAS  Google Scholar 

  55. Behar D (1974) Pulse radiolysis study of aqueous hydrogen cyanide and cyanide solutions. J Phys Chem 78:2660–2663

    Article  CAS  Google Scholar 

  56. Wilkinson F (1980) Chemical kinetics and reaction mechanisms. Van Nostrand Reinhold, New York, pp 42–44

    Google Scholar 

  57. Perez-Benito JF (2017) Some considerations on the fundamentals of chemical kinetics: steady state, quasi-equilibrium, and transition state theory. J Chem Educ 94:1238–1246

    Article  CAS  Google Scholar 

  58. Wang J, Wang S (2021) Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants. Chem Eng J 411:128392

    Article  CAS  Google Scholar 

  59. Han M, Jafarikojour M, Hamachi M, Mohseni M (2021) The impact of chloride and chlorine radical on nitrite formation during vacuum photolysis of water. Sci Total Environ 760:143325

    Article  CAS  PubMed  Google Scholar 

  60. Xu HB, Zhu YP, Cui DJ, Du MR, Wang JQ, Ma RN, Jiao Z (2019) Evaluating the roles of OH radicals, H2O2, ORP and pH in the inactivation of yeast on a tissue model by surface micro-discharge plasma. J Phys D 52:395201

    Article  CAS  Google Scholar 

  61. Krewing M, Schubert B, Bandow JE (2020) A dielectric barrier discharge plasma degrades proteins to peptides by cleaving the peptide bond. Plasma Chem Plasma Process 40:685–696

    Article  CAS  Google Scholar 

  62. Espenson JH (1995) Chemical kinetics and reaction mechanisms. McGraw-Hill, New York, pp 113–115

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquin F. Perez-Benito.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez-Benito, J.F., Pages-Rebull, J. Oxidation of hexacyanoferrate(II) ion by hydrogen peroxide: evidence of free radical intermediacy. Reac Kinet Mech Cat 133, 631–653 (2021). https://doi.org/10.1007/s11144-021-02026-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02026-4

Keywords

Navigation