Skip to main content
Log in

Disclinations in the Geometric Theory of Defects

  • Research Articles
  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

In the geometric theory of defects, media with a spin structure (for example, ferromagnets) are regarded as manifolds with given Riemann–Cartan geometry. We consider the case with the Euclidean metric, which corresponds to the absence of elastic deformations, but with nontrivial \(\mathbb{SO}(3)\) connection, which produces nontrivial curvature and torsion tensors. We show that the ’t Hooft–Polyakov monopole has a physical interpretation; namely, in solid state physics it describes media with continuous distribution of dislocations and disclinations. To describe single disclinations, we use the Chern–Simons action. We give two examples of point disclinations: a spherically symmetric point “hedgehog” disclination and a point disclination for which the \(n\)-field takes a fixed value at infinity and has an essential singularity at the origin. We also construct an example of linear disclinations with Frank vector divisible by \(2\pi\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. S. Azevedo, “Charged particle with magnetic moment in the background of line topological defect,” Phys. Lett. A 307 (1), 65–68 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  2. K. Bakke and C. Furtado, “Abelian geometric phase due to the presence of an edge dislocation,” Phys. Rev. A 87 (1), 012130 (2013).

    Article  Google Scholar 

  3. B. A. Bilby, R. Bullough, and E. Smith, “Continuous distributions of dislocations: A new application of the methods of non-Riemannian geometry,” Proc. R. Soc. London A 231, 263–273 (1955).

    Article  MathSciNet  Google Scholar 

  4. E. B. Bogomol’nyi, “The stability of classical solutions,” Sov. J. Nucl. Phys. 24 (4), 449–454 (1976) [transl. from Yad. Fiz. 24 (4), 861–870 (1976)].

    MathSciNet  Google Scholar 

  5. C. G. Böhmer and Yu. N. Obukhov, “A gauge-theoretical approach to elasticity with microrotations,” Proc. R. Soc. London A 468, 1391–1407 (2012).

    MathSciNet  MATH  Google Scholar 

  6. E. Cartan, “Sur une généralisation de la notion de courbure de Riemann et les espaces à torsion,” C. R. Acad. Sci., Paris 174, 593–595 (1922).

    MATH  Google Scholar 

  7. S.-S. Chern and J. Simons, “Characteristic forms and geometric invariants,” Ann. Math., Ser. 2, 99 (1), 48–69 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  8. M. F. Ciappina, A. Iorio, P. Pais, and A. Zampeli, “Torsion in quantum field theory through time-loops on Dirac materials,” Phys. Rev. D 101 (3), 036021 (2020).

    Article  MathSciNet  Google Scholar 

  9. G. de Berredo-Peixoto and M. O. Katanaev, “Inside the BTZ black hole,” Phys. Rev. D 75 (2), 024004 (2007).

    Article  MathSciNet  Google Scholar 

  10. G. de Berredo-Peixoto and M. O. Katanaev, “Tube dislocations in gravity,” J. Math. Phys. 50 (4), 042501 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  11. G. de Berredo-Peixoto, M. O. Katanaev, E. Konstantinova, and I. L. Shapiro, “Schrödinder equation in the space with cylindrical geometric defect and possible application to multi-wall nanotubes,” Nuovo Cimento B 125 (8), 915–931 (2010).

    Google Scholar 

  12. A. de Padua, F. Parisio-Filho, and F. Moraes, “Geodesics around line defects in elastic solids,” Phys. Lett. A 238 (2–3), 153–158 (1998).

    Article  Google Scholar 

  13. B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry: Methods and Applications, Vol. I: The Geometry of Surfaces, Transformation Groups, and Fields (Editorial URSS, Moscow, 1998). Engl. transl.: B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov, Modern Geometry: Methods and Applications, Part I: The Geometry of Surfaces, Transformation Groups, and Fields (Springer, New York, 1992), Grad. Texts Math. 93.

    MATH  Google Scholar 

  14. I. E. Dzyaloshinskii and G. E. Volovik, “On the concept of local invariance in the theory of spin glasses,” J. Phys. 39 (6), 693–700 (1978).

    Article  Google Scholar 

  15. I. E. Dzyaloshinskii and G. E. Volovik, “Poisson brackets in condensed matter physics,” Ann. Phys. 125 (1), 67–97 (1980).

    Article  MathSciNet  Google Scholar 

  16. F. C. Frank, “On the theory of liquid crystals,” Discuss. Faraday Soc. 25, 19–28 (1958).

    Article  Google Scholar 

  17. C. Furtado, F. Moraes, and A. M. de M. Carvalho, “Geometric phases in graphitic cones,” Phys. Lett. A 372 (32), 5368–5371 (2008).

    Article  MATH  Google Scholar 

  18. F. W. Hehl, J. D. McCrea, E. W. Mielke, and Y. Ne’eman, “Metric-affine gauge theory of gravity: Field equations, Noether identities, world spinors, and breaking of dilation invariance,” Phys. Rep. 258 (1–2), 1–171 (1995).

    Article  MathSciNet  Google Scholar 

  19. J. A. Hertz, “Gauge models for spin-glasses,” Phys. Rev. B 18 (9), 4875–4885 (1978).

    Article  Google Scholar 

  20. G. ’t Hooft, “Magnetic monopoles in unified gauge theories,” Nucl. Phys. B 79 (2), 276–284 (1974).

    Article  MathSciNet  Google Scholar 

  21. A. Kadić and D. G. B. Edelen, A Gauge Theory of Dislocations and Disclinations (Springer, Berlin, 1983), Lect. Notes Phys. 174.

    MATH  Google Scholar 

  22. M. O. Katanaev, “Wedge dislocation in the geometric theory of defects,” Theor. Math. Phys. 135 (2), 733–744 (2003) [transl. from Teor. Mat. Fiz. 135 (2), 338–352 (2003)].

    Article  MathSciNet  MATH  Google Scholar 

  23. M. O. Katanaev, “One-dimensional topologically nontrivial solutions in the Skyrme model,” Theor. Math. Phys. 138 (2), 163–176 (2004) [transl. from Teor. Mat. Fiz. 138 (2), 193–208 (2004)].

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Katanaev, “Torsion and Burgers vector of a tube dislocation,” Proc. Sci. 127 (CNCFG2010), 022 (2011).

    Google Scholar 

  25. M. O. Katanaev, “Rotational elastic waves in double wall tube,” Phys. Lett. A 379 (24–25), 1544–1548 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  26. M. O. Katanaev, “Rotational elastic waves in a cylindrical waveguide with wedge dislocation,” J. Phys. A: Math. Theor. 49 (8), 085202 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  27. M. O. Katanaev, “Description of disclinations and dislocations by the Chern–Simons action for \(\mathbb {SO}(3)\) connection,” Phys. Part. Nucl. 49 (5), 890–893 (2018) [transl. from Fiz. Elem. Chastits At. Yadra 49 (5), 1462–1470 (2018)].

    Article  Google Scholar 

  28. M. O. Katanaev, “Chern–Simons action and disclinations,” Proc. Steklov Inst. Math. 301, 114–133 (2018) [transl. from Tr. Mat. Inst. Steklova 301, 124–143 (2018)].

    Article  MathSciNet  MATH  Google Scholar 

  29. M. O. Katanaev, “Gauge parameterization of the \(n\)-field,” Proc. Steklov Inst. Math. 306, 127–134 (2019) [transl. from Tr. Mat. Inst. Steklova 306, 139–147 (2019)].

    Article  MathSciNet  MATH  Google Scholar 

  30. M. O. Katanaev, “The ’t Hooft–Polyakov monopole in the geometric theory of defects,” Mod. Phys. Lett. B 34 (12), 2050126 (2020).

    Article  MathSciNet  Google Scholar 

  31. M. O. Katanaev and I. G. Mannanov, “Wedge dislocations, three-dimensional gravity, and the Riemann–Hilbert problem,” Phys. Part. Nucl. 43 (5), 639–643 (2012) [transl. from Fiz. Elem. Chastits At. Yadra 43 (5), 1238–1247 (2012)].

    Article  MATH  Google Scholar 

  32. M. O. Katanaev and I. G. Mannanov, “Wedge dislocations and three-dimensional gravity,” p-Adic Numbers Ultrametric Anal. Appl. 4 (1), 5–19 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  33. M. O. Katanaev and B. O. Volkov, “Point disclinations in the Chern–Simons geometric theory of defects,” Mod. Phys. Lett. B 34 (Supp01), 2150012 (2020).

    Article  MathSciNet  Google Scholar 

  34. M. O. Katanaev and I. V. Volovich, “Theory of defects in solids and three-dimensional gravity,” Ann. Phys. 216 (1), 1–28 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  35. M. O. Katanaev and I. V. Volovich, “Scattering on dislocations and cosmic strings in the geometric theory of defects,” Ann. Phys. 271 (2), 203–232 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  36. H. Kleinert, Gauge Fields in Condensed Matter (World Scientific, Singapore, 1989), Vols. 1, 2.

    Book  MATH  Google Scholar 

  37. M. Kléman, “The general theory of dislocations,” in Dislocations in Solids, Ed. by F. R. N. Nabarro (North-Holland, Amsterdam, 1980), Vol. 5, pp. 243–297.

    Google Scholar 

  38. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry (Interscience Publ., New York, 1963), Vol. 1.

    MATH  Google Scholar 

  39. K. Kondo, “On the geometrical and physical foundations of the theory of yielding,” in Proc. 2nd Japan Natl. Congr. for Applied Mechanics, 1952 (Japan Natl. Committee Theor. Appl. Mech. (Sci. Counc. Japan), Tokyo, 1953), pp. 41–47.

    MathSciNet  Google Scholar 

  40. A. M. Kosevich, Physical Mechanics of Real Crystals (Naukova Dumka, Kiev, 1981) [in Russian].

    Google Scholar 

  41. E. Kröner, Kontinuumstheorie der Versetzungen und Eigenspannungen (Springer, Berlin, 1958).

    Book  MATH  Google Scholar 

  42. E. Kröner, “Continuum theory of defects,” in Physics of Defects: Les Houches Summer Sch., Sess. 35, 1980, Ed. by R. Balian et al. (North-Holland, Amsterdam, 1981), pp. 215–315.

    Google Scholar 

  43. I. A. Kunin and B. I. Kunin, “Gauge theories in mechanics,” in Trends in Application of Pure Mathematics to Mechanics (Springer, Berlin, 1986), Lect. Notes Phys. 249, pp. 246–249.

    Article  MathSciNet  MATH  Google Scholar 

  44. L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Pergamon, Oxford, 1970), Course of Theoretical Physics 7.

    MATH  Google Scholar 

  45. M. Lazar and F. W. Hehl, “Cartan’s spiral staircase in physics and, in particular, in the gauge theory of dislocations,” Found. Phys. 40 (9), 1298–1325 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  46. M. Monastyrsky, Topology of Gauge Fields and Condensed Matter (Springer, New York, 1993).

    Book  MATH  Google Scholar 

  47. F. Moraes, “Geodesics around a dislocation,” Phys. Lett. A 214 (3–4), 189–192 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  48. W. Nowacki, Teoria sprȩżystości (PWN, Warszawa, 1970).

    MATH  Google Scholar 

  49. J. F. Nye, “Some geometrical relations in dislocated crystals,” Acta Metall. 1, 153–162 (1953).

    Article  Google Scholar 

  50. A. M. Polyakov, “Particle spectrum in quantum field theory,” JETP Lett. 20 (6), 194–195 (1974) [transl. from Pis’ma Zh. Eksp. Teor. Fiz. 20 (6), 430–433 (1974)].

    Google Scholar 

  51. M. K. Prasad and C. M. Sommerfield, “Exact classical solution for the ’t Hooft monopole and the Julia–Zee dyon,” Phys. Rev. Lett. 35 (12), 760–762 (1975).

    Article  Google Scholar 

  52. A. Randono and T. L. Hughes, “Torsional monopoles and torqued geometries in gravity and condensed matter,” Phys. Rev. Lett. 106 (16), 161102 (2011).

    Article  Google Scholar 

  53. N. Rivier and D. M. Duffy, “Line defects and tunnelling modes in glasses,” J. Phys. 43 (2), 293–306 (1982).

    Article  Google Scholar 

  54. V. A. Rubakov, Classical Theory of Gauge Fields (Princeton Univ. Press, Princeton, NJ, 2002; URSS, Moscow, 1999).

    MATH  Google Scholar 

  55. L. I. Sedov and V. L. Berditchevski, “A dynamic theory of continual dislocations,” in Mechanics of Generalized Continua: Proc. UITAM Symp., Freudenstadt and Stuttgart, 1967, Ed. by E. Kröner (Springer, Heidelberg, 1967), pp. 214–238.

    MATH  Google Scholar 

  56. Ya. M. Shnir, Magnetic Monopoles (Springer, Berlin, 2005).

    Book  MATH  Google Scholar 

  57. V. S. Vladimirov, Equations of Mathematical Physics (Nauka, Moscow, 1967; M. Dekker, New York, 1971).

    Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-11-50067.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. O. Katanaev.

Additional information

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2021, Vol. 313, pp. 87–108 https://doi.org/10.4213/tm4158.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katanaev, M.O. Disclinations in the Geometric Theory of Defects. Proc. Steklov Inst. Math. 313, 78–98 (2021). https://doi.org/10.1134/S0081543821020097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543821020097

Navigation