Skip to main content
Log in

Constrained Optimization Criterion for Zirconium Isotope Separation by the Method of Laser-Assisted Retardation of Condensation

  • Research Articles
  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

A new optimization criterion for iterative zirconium isotope recovery by laser-assisted retardation of condensation is introduced. Generally, the optimization should be performed over the following set of parameters: gas flow pressure and temperature, target gas molar fraction, laser pulse intensity, laser beam radius, nozzle throat height and width, total processing time (number of iterations), and irradiation cell length. The laser intensity variation range should satisfy the condition of applicability of the isotope separation method used, and temperature in the mixing tank should be high enough to prevent condensation of the target gas. The evolution of the objective function for zirconium isotope separation has been evaluated as a function of the gas flow core temperature at different ambient gas pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. R. V. Ambartsumyan, V. S. Dolzhikov, V. S. Letokhov, E. A. Ryabov, and N. V. Chekalin, “Investigation of the dissociation of BCI\(_3\) molecules in the field of an intense CO\(_2\) laser pulse,” Sov. Phys. JETP 42 (1), 36–41 (1975) [transl. from Zh. Eksp. Teor. Fiz. 69 (1), 72–83 (1975)].

    Google Scholar 

  2. V. M. Apatin et al., “Laser separation of nitrogen isotopes by the IR + UV dissociation of ammonia molecules,” Quantum Electron. 38 (8), 775–782 (2008) [transl. from Kvant. Elektron. 38 (8), 775–782 (2008)].

    Article  Google Scholar 

  3. V. Yu. Baranov et al., “Production of carbon isotopes by laser separation,” in Progress in Research and Development of High-Power Industrial CO\(_2\) Lasers (SPIE, Bellingham, WA, 2000), Proc. SPIE 4165, pp. 314–323.

    Article  Google Scholar 

  4. J. L. Burmeister, E. A. Deardorff, A. Jensen, and V. H. Christiansen, “Bonding patterns in metallocene pseudohalide complexes,” Inorg. Chem. 9 (1), 58–63 (1970).

    Article  Google Scholar 

  5. D. Dong, C. Zhang, H. Rabitz, A. Pechen, and T.-J. Tarn, “Incoherent control of locally controllable quantum systems,” J. Chem. Phys. 129 (15), 154103 (2008).

    Article  Google Scholar 

  6. L. M. Dyagileva, L. I. Vyshinskaya, E. I. Tsyganova, and V. L. Ivanov, “Thermal decomposition of bis(cyclopentadienyl)dimethylzirconium,” Russ. J. Gen. Chem. 67 (5), 663–666 (1997).

    Google Scholar 

  7. J. W. Eerkens, “Equilibrium dimer concentrations in gases and gas mixtures,” Chem. Phys. 269 (1–3), 189–241 (2001).

    Article  Google Scholar 

  8. J. W. Eerkens, “Laser-induced migration and isotope separation of epi-thermal monomers and dimers in supercooled free jets,” Laser Part. Beams 23 (2), 225–253 (2005).

    Article  Google Scholar 

  9. J. W. Eerkens, J. F. Kunze, and L. J. Bond, “Laser isotope enrichment for medical and industrial applications,” in Proc. 14th Int. Conf. on Nuclear Engineering, Miami, FL, 2006 (ASME, New York, 2006), Vol. 3, pp. 483–492.

    Google Scholar 

  10. A. A. Granovsky, “Firefly computational chemistry program, version 8,” http://classic.chem.msu.su/gran/firefly/

  11. Y. T. Lee, “Isotope separation by photodissociation of Van der Wall’s molecules,” US patent no. 4032306 (1977).

  12. V. S. Letokhov and E. A. Ryabov, “Laser infrared multiphoton noncoherent control of intermolecular (isotope) selectivity for polyatomic molecules on a practical scale,” Isr. J. Chem. 44 (1–3), 1–7 (2004).

    Article  Google Scholar 

  13. K. A. Lyakhov, H. J. Lee, and A. N. Pechen, “Some issues of industrial scale boron isotopes separation by the laser assisted retarded condensation (SILARC) method,” Sep. Purif. Technol. 176, 402–411 (2017).

    Article  Google Scholar 

  14. K. A. Lyakhov and A. N. Pechen, “CO\(_2\) laser system design for efficient boron isotope separation by the method of selective laser-assisted retardation of condensation,” Appl. Phys. B 126 (8), 141 (2020).

    Article  Google Scholar 

  15. K. A. Lyakhov and A. N. Pechen, “Evolution of the enrichment factor for an iterative scheme of zirconium isotopes separation,” Lobachevskii J. Math. 41 (12), 2345–2352 (2020).

    Article  MathSciNet  Google Scholar 

  16. K. A. Lyakhov, A. N. Pechen, and H.-J. Lee, “The efficiency of one-line versus multi-line excitation of boron isotopes within the method of selective laser assisted retardation of condensation,” AIP Adv. 8 (9), 095325 (2018).

    Article  Google Scholar 

  17. W. H. Miller and J. W. Eerkens, “Laser isotope separation employing condensation repression,” Preprint (Nucl. Sci. Eng. Inst., Univ. Missouri, Columbia, MO, 2004).

  18. “Oerlikon Leybold Vacuum full line catalog,” http://www.leybold.com/epaper/en/

  19. PAR Systems, “UT Series Laser,” http://www.par.com/technologies/pulsed-co2-lasers/atmospheric-tea-co2-lasers/ut-series-laser/

  20. A. Pechen, N. Il’in, F. Shuang, and H. Rabitz, “Quantum control by von Neumann measurements,” Phys. Rev. A 74 (5), 052102 (2006).

    Article  Google Scholar 

  21. A. Pechen and H. Rabitz, “Teaching the environment to control quantum systems,” Phys. Rev. A 73 (6), 062102 (2006).

    Article  Google Scholar 

  22. M. W. Schmidt et al., “General atomic and molecular electronic structure system,” J. Comput. Chem. 14 (11), 1347–1363 (1993).

    Article  Google Scholar 

  23. R. Snyder, “A proliferation assessment of third generation laser uranium enrichment technology,” Sci. Global Secur. 24 (2), 68–91 (2016).

    Article  Google Scholar 

Download references

Funding

This work is supported by the Russian Science Foundation under grant 17-11-01388.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Lyakhov.

Additional information

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2021, Vol. 313, pp. 143–153 https://doi.org/10.4213/tm4172.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyakhov, K.A., Pechen, A.N. Constrained Optimization Criterion for Zirconium Isotope Separation by the Method of Laser-Assisted Retardation of Condensation. Proc. Steklov Inst. Math. 313, 131–141 (2021). https://doi.org/10.1134/S0081543821020139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543821020139

Keywords

Navigation