Skip to main content
Log in

An Example of Explicit Generators of Local and Nonlocal Quantum Master Equations

  • Research Articles
  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

A simple example of completely positive dynamics is considered for which both the generator of a nonlocal integro-differential equation leading to such dynamics and the time-local generator can be calculated explicitly. It is demonstrated that introducing a small parameter in this simple example allows one to reproduce some nonperturbative phenomena that occur in more realistic models. In addition, a special case of fermionic dynamics is considered, and it is shown that one can actually find families of moments whose dynamics is linear but satisfies non-Markovian equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Accardi, Y. G. Lu, and I. Volovich, Quantum Theory and Its Stochastic Limit (Springer, Berlin, 2002).

    Book  MATH  Google Scholar 

  2. P. N. Argyres and P. L. Kelley, “Theory of spin resonance and relaxation,” Phys. Rev. 134 (1A), A98–A111 (1964).

    Article  MATH  Google Scholar 

  3. K. Bai, Z. Peng, H.-G. Luo, and J.-H. An, “Retrieving ideal precision in noisy quantum optical metrology,” Phys. Rev. Lett. 123 (4), 040402 (2019).

    Article  Google Scholar 

  4. G. R. Belitskii and Yu. I. Lyubich, Norms of Matrices and Their Applications (Naukova Dumka, Kiev, 1984). Engl. transl.: Matrix Norms and Their Applications (Birkhäuser, Basel, 1988), Oper. Theory: Adv. Appl. 36.

    MATH  Google Scholar 

  5. N. N. Bogoliubov, Problems of a Dynamical Theory in Statistical Physics (Gostekhizdat, Moscow, 1946; North-Holland, Amsterdam, 1962).

    Google Scholar 

  6. H.-P. Breuer, “Non-Markovian generalization of the Lindblad theory of open quantum systems,” Phys. Rev. A 75 (2), 022103 (2007).

    Article  MathSciNet  Google Scholar 

  7. H.-P. Breuer, B. Kappler, and F. Petruccione, “Stochastic wave-function method for non-Markovian quantum master equations,” Phys. Rev. A 59 (2), 1633–1643 (1999).

    Article  Google Scholar 

  8. H.-P. Breuer, E.-M. Laine, and J. Piilo, “Measure for the degree of non-Markovian behavior of quantum processes in open systems,” Phys. Rev. Lett. 103 (21), 210401 (2009).

    Article  MathSciNet  Google Scholar 

  9. H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford Univ. Press, Oxford, 2002).

    MATH  Google Scholar 

  10. D. Burgarth, G. Chiribella, V. Giovannetti, P. Perinotti, and K. Yuasa, “Ergodic and mixing quantum channels in finite dimensions,” New J. Phys. 15 (7), 073045 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  11. T. A. Burton, Volterra Integral and Differential Equations (Elsevier, Amsterdam, 2005).

    MATH  Google Scholar 

  12. D. Chruściński, “Introduction to non-Markovian evolution of \(n\)-level quantum systems,” in Open Quantum Systems: A Mathematical Perspective, Ed. by D. Bahns, A. Pohl, and I. Witt (Birkhäuser, Cham, 2019), pp. 55–76.

    Article  MathSciNet  MATH  Google Scholar 

  13. E. B. Davies, Quantum Theory of Open Systems (Acad. Press, London, 1976).

    MATH  Google Scholar 

  14. S. N. Filippov and D. Chruściński, “Time deformations of master equations,” Phys. Rev. A 98 (2), 022123 (2018).

    Article  Google Scholar 

  15. S. N. Filippov, A. N. Glinov, and L. Leppäjärvi, “Phase covariant qubit dynamics and divisibility,” Lobachevskii J. Math. 41 (4), 617–630 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  16. C. W. Gardiner and P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics (Springer, Berlin, 2004).

    MATH  Google Scholar 

  17. G. H. Golub and C. F. Van Loan, Matrix Computations (Johns Hopkins Univ. Press, Baltimore, MD, 1996).

    MATH  Google Scholar 

  18. V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, “Completely positive dynamical semigroups of \(N\)-level systems,” J. Math. Phys. 17 (5), 821–825 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  19. M. J. W. Hall, J. D. Cresser, L. Li, and E. Andersson, “Canonical form of master equations and characterization of non-Markovianity,” Phys. Rev. A 89 (4), 042120 (2014).

    Article  Google Scholar 

  20. A. S. Holevo and V. Giovannetti, “Quantum channels and their entropic characteristics,” Rep. Prog. Phys. 75 (4), 046001 (2012).

    Article  MathSciNet  Google Scholar 

  21. S. Jang, J. Cao, and R. J. Silbey, “Fourth-order quantum master equation and its Markovian bath limit,” J. Chem. Phys. 116 (7), 2705–2717 (2002).

    Article  Google Scholar 

  22. A. Kolli, E. J. O’Reilly, G. D. Scholes, and A. Olaya-Castro, “The fundamental role of quantized vibrations in coherent light harvesting by cryptophyte algae,” J. Chem. Phys. 137 (17), 174109 (2012).

    Article  Google Scholar 

  23. A. Kossakowski and R. Rebolledo, “On non-Markovian time evolution in open quantum systems,” Open Syst. Inf. Dyn. 14 (3), 265–274 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Kubo, “Stochastic Liouville equations,” J. Math. Phys. 4 (2), 174–183 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  25. L. Li, M. J. W. Hall, and H. M. Wiseman, “Concepts of quantum non-Markovianity: A hierarchy,” Phys. Rep. 759, 1–51 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  26. G. Lindblad, “On the generators of quantum dynamical semigroups,” Commun. Math. Phys. 48 (2), 119–130 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  27. N. Lo Gullo, I. Sinayskiy, Th. Busch, and F. Petruccione, “Non-Markovianity criteria for open system dynamics,” arXiv: 1401.1126 [quant-ph].

  28. I. A. Luchnikov, S. V. Vintskevich, H. Ouerdane, and S. N. Filippov, “Simulation complexity of open quantum dynamics: Connection with tensor networks,” Phys. Rev. Lett. 122 (16), 160401 (2019).

    Article  Google Scholar 

  29. S. Milz, M. S. Kim, F. A. Pollock, and K. Modi, “Completely positive divisibility does not mean Markovianity,” Phys. Rev. Lett. 123 (4), 040401 (2019).

    Article  MathSciNet  Google Scholar 

  30. M. Mohseni, P. Rebentrost, S. Lloyd, and A. Aspuru-Guzik, “Environment-assisted quantum walks in photosynthetic energy transfer,” J. Chem. Phys. 129 (17), 174106 (2008).

    Article  Google Scholar 

  31. S. Nakajima, “On quantum theory of transport phenomena: Steady diffusion,” Prog. Theor. Phys. 20 (6), 948–959 (1958).

    Article  MathSciNet  MATH  Google Scholar 

  32. Iu. A. Nosal’ and A. E. Teretenkov, “Exact dynamics of moments and correlation functions for GKSL fermionic equations of Poisson type,” Math. Notes 108 (5–6), 911–915 (2020) [transl. from Mat. Zametki 108 (6), 947–951 (2020)].

    Article  MathSciNet  MATH  Google Scholar 

  33. A. N. Pechen and I. V. Volovich, “Quantum multipole noise and generalized quantum stochastic equations,” Infin. Dimens. Anal. Quantum Probab. Relat. Top. 5 (4), 441–464 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  34. M. B. Plenio, J. Almeida, and S. F. Huelga, “Origin of long-lived oscillations in 2D-spectra of a quantum vibronic model: Electronic versus vibrational coherence,” J. Chem. Phys. 139 (23), 235102 (2013).

    Article  Google Scholar 

  35. M. B. Plenio and S. F. Huelga, “Dephasing-assisted transport: Quantum networks and biomolecules,” New J. Phys. 10 (11), 113019 (2008).

    Article  Google Scholar 

  36. Á. Rivas, S. F. Huelga, and M. B. Plenio, “Quantum non-Markovianity: Characterization, quantification and detection,” Rep. Prog. Phys. 77 (9), 094001 (2014).

    Article  MathSciNet  Google Scholar 

  37. F. Shibata, Y. Takahashi, and N. Hashitsume, “A generalized stochastic Liouville equation. Non-Markovian versus memoryless master equations,” J. Stat. Phys. 17 (4), 171–187 (1977).

    Article  MathSciNet  Google Scholar 

  38. N. Singh and P. Brumer, “Efficient computational approach to the non-Markovian second order quantum master equation: Electronic energy transfer in model photosynthetic systems,” Mol. Phys. 110 (15–16), 1815–1828 (2012).

    Article  Google Scholar 

  39. K. Siudzińska and D. Chruściński, “Memory kernel approach to generalized Pauli channels: Markovian, semi-Markov, and beyond,” Phys. Rev. A 96 (2), 022129 (2017).

    Article  Google Scholar 

  40. P. Strasberg and M. Esposito, “Response functions as quantifiers of non-Markovianity,” Phys. Rev. Lett. 121 (4), 040601 (2018).

    Article  Google Scholar 

  41. L. A. Takhtajan, Quantum Mechanics for Mathematicians (Am. Math. Soc., Providence, RI, 2008), Grad. Stud. Math. 95.

    MATH  Google Scholar 

  42. A. E. Teretenkov, “Quadratic fermionic dynamics with dissipation,” Math. Notes 102 (5–6), 846–853 (2017) [transl. from Mat. Zametki 102 (6), 908–916 (2017)].

    Article  MathSciNet  MATH  Google Scholar 

  43. A. E. Teretenkov, “Pseudomode approach and vibronic non-Markovian phenomena in light-harvesting complexes,” Proc. Steklov Inst. Math. 306, 242–256 (2019) [transl. from Tr. Mat. Inst. Steklova 306, 258–272 (2019)].

    Article  MathSciNet  MATH  Google Scholar 

  44. A. E. Teretenkov, “Dynamics of moments for quadratic GKSL generators,” Math. Notes 106 (1–2), 151–155 (2019) [transl. from Mat. Zametki 106 (1), 149–153 (2019)].

    Article  MathSciNet  MATH  Google Scholar 

  45. A. E. Teretenkov, “Irreversible quantum evolution with quadratic generator: Review,” Infin. Dimens. Anal. Quantum Probab. Relat. Top. 22 (4), 1930001 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  46. A. E. Teretenkov, “Dynamics of moments of arbitrary order for stochastic Poisson compressions,” Math. Notes 107 (3–4), 695–698 (2020) [transl. from Mat. Zametki 107 (4), 637–640 (2020)].

    Article  MathSciNet  MATH  Google Scholar 

  47. A. E. Teretenkov, “Non-perturbative effects in corrections to quantum master equation arising in Bogolubov–Van Hove limit,” arXiv: 2008.02820 [quant-ph].

  48. C. Timm, “Time-convolutionless master equation for quantum dots: Perturbative expansion to arbitrary order,” Phys. Rev. B 83 (11), 115416 (2011).

    Article  Google Scholar 

  49. A. Trushechkin, “Calculation of coherences in Förster and modified Redfield theories of excitation energy transfer,” J. Chem. Phys. 151 (7), 074101 (2019).

    Article  Google Scholar 

  50. A. S. Trushechkin, “Higher-order corrections to the Redfield equation with respect to the system-bath coupling based on the hierarchical equations of motion,” Lobachevskii J. Math. 40 (10), 1606–1618 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  51. B. Vacchini, “Generalized master equations leading to completely positive dynamics,” Phys. Rev. Lett. 117 (23), 230401 (2016).

    Article  MathSciNet  Google Scholar 

  52. L. Van Hove, “Quantum-mechanical perturbations giving rise to a statistical transport equation,” Physica 21 (1–5), 517–540 (1954).

    Article  MathSciNet  MATH  Google Scholar 

  53. N. G. van Kampen, “A cumulant expansion for stochastic linear differential equations. I, II,” Physica 74 (2), 215–238, 239–247 (1974).

    Article  MathSciNet  Google Scholar 

  54. M. M. Wolf, “Quantum channels & operations: Guided tour,” Preprint (Tech. Univ. München, Munich, 2012), https://www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/MichaelWolf/QChannelLecture.pdf

  55. M. M. Wolf, J. Eisert, T. S. Cubitt, and J. I. Cirac, “Assessing non-Markovian quantum dynamics,” Phys. Rev. Lett. 101 (15), 150402 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  56. F. A. Wudarski, P. Należyty, G. Sarbicki, and D. Chruściński, “Admissible memory kernels for random unitary qubit evolution,” Phys. Rev. A 91 (4), 042105 (2015).

    Article  Google Scholar 

  57. R. Zwanzig, “Ensemble method in the theory of irreversibility,” J. Chem. Phys. 33 (5), 1338–1341 (1960).

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work is supported by the Russian Science Foundation under grant 17-71-20154.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Teretenkov.

Additional information

Translated from Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2021, Vol. 313, pp. 253–262 https://doi.org/10.4213/tm4160.

Translated by I. Nikitin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teretenkov, A.E. An Example of Explicit Generators of Local and Nonlocal Quantum Master Equations. Proc. Steklov Inst. Math. 313, 236–245 (2021). https://doi.org/10.1134/S0081543821020218

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543821020218

Navigation