Skip to main content
Log in

On Some Aspects of the Holographic Pole-Skipping Phenomenon

  • Research Articles
  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We study various aspects of the recently discovered holographic pole-skipping phenomenon. We consider pole-skipping in the holographic dual of rotating black holes for the scalar field and metric perturbations. We determine the Lyapunov exponent and butterfly velocity from holographic gravitational pole-skipping points. We also study the first pole-skipping point for the scalar field in various backgrounds including rotating and charged black holes, and we take into account the interaction with the background electromagnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note that \(\Lambda\) is related to the so-called AdS radius \(\ell\) as \(\Lambda=-1/\ell^2\). We take \(\ell=1\) in all calculations.

  2. Moreover, this equation must vanish identically on-shell for all \(r\), i.e., for the choice of \(f(r)\), \(G(r)\), and \(g(r)\) in the form (2.5).

  3. One can show that only this choice is relevant to the nondiagonal perturbation under consideration (see [8]).

  4. Again we assume the ansatz in the form of an infalling wave (see (3.4) below).

  5. With \(G(r)\) and \(f(r)\) vanishing at \(r_+\).

  6. Again we assume that on the horizon \(f(r_+)=0\) and \(A(r_+)=0\).

References

  1. D. S. Ageev and I. Ya. Arefeva, “Holography and nonlocal operators for the BTZ black hole with nonzero angular momentum,” Theor. Math. Phys. 180 (2), 881–893 (2014) [transl. from Teor. Mat. Fiz. 180 (2), 147–161 (2014)]; arXiv: 1402.6937 [hep-th].

    Article  MathSciNet  Google Scholar 

  2. D. S. Ageev and I. Ya. Aref’eva, “When things stop falling, chaos is suppressed,” J. High Energy Phys. 2019 (01), 100 (2019); arXiv: 1806.05574 [hep-th].

    Article  MathSciNet  Google Scholar 

  3. I. Aref’eva, A. Bagrov, and A. S. Koshelev, “Holographic thermalization from Kerr–AdS,” J. High Energy Phys. 2013 (07), 170 (2013); arXiv: 1305.3267 [hep-th].

    Article  MathSciNet  Google Scholar 

  4. M. Blake, R. A. Davison, S. Grozdanov, and H. Liu, “Many-body chaos and energy dynamics in holography,” J. High Energy Phys. 2018 (10), 035 (2018); arXiv: 1809.01169 [hep-th].

    Article  MathSciNet  Google Scholar 

  5. M. Blake, R. A. Davison, and D. Vegh, “Horizon constraints on holographic Green’s functions,” J. High Energy Phys. 2020 (01), 077 (2020); arXiv: 1904.12883 [hep-th].

    Article  MathSciNet  Google Scholar 

  6. S. W. Hawking, C. J. Hunter, and M. M. Taylor-Robinson, “Rotation and the AdS–CFT correspondence,” Phys. Rev. D 59 (6), 064005 (1999); arXiv: hep-th/9811056.

    Article  MathSciNet  Google Scholar 

  7. V. Jahnke, K.-Y. Kim, and J. Yoon, “On the chaos bound in rotating black holes,” J. High Energy Phys. 2019 (05), 037 (2019); arXiv: 1903.09086 [hep-th].

    Article  MathSciNet  Google Scholar 

  8. Y. Liu and A. Raju, “Quantum chaos in topologically massive gravity,” J. High Energy Phys. 2020 (12), 027 (2020); arXiv: 2005.08508 [hep-th].

    Article  Google Scholar 

  9. J. Maldacena, “The large-N limit of superconformal field theories and supergravity,” Int. J. Theor. Phys. 38 (4), 1113–1133 (1999); arXiv: hep-th/9711200 [hep-th].

    Article  MathSciNet  Google Scholar 

  10. J. Maldacena, S. H. Shenker, and D. Stanford, “A bound on chaos,” J. High Energy Phys. 2016 (08), 106 (2016); arXiv: 1503.01409 [hep-th].

    Article  MathSciNet  Google Scholar 

  11. R. R. Poojary, “BTZ dynamics and chaos,” J. High Energy Phys. 2020 (03), 048 (2020); arXiv: 1812.10073 [hep-th].

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work is supported by the Russian Science Foundation under grant 20-12-00200.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry S. Ageev.

Additional information

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2021, Vol. 313, pp. 7–13 https://doi.org/10.4213/tm4182.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ageev, D.S. On Some Aspects of the Holographic Pole-Skipping Phenomenon. Proc. Steklov Inst. Math. 313, 1–7 (2021). https://doi.org/10.1134/S0081543821020012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543821020012

Navigation