Skip to main content
Log in

Some Algebraic and Geometric Aspects of Quantum Measurements

  • Research Articles
  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We study positive operator-valued measures by algebraic and geometric methods. We prove that positive operator-valued measures are parametrized by a Poisson manifold. Also, we show how to obtain symplectic leaves of this Poisson manifold in terms of parameters of the measures. In addition, we study the interaction of two projection-valued measures by the methods of algebraic geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. P. Belmans, D. Presotto, and M. Van den Bergh, “Comparison of two constructions of noncommutative surfaces with exceptional collections of length 4,” arXiv: 1811.08810v1 [math.AG].

  2. R. Bocklandt and L. Le Bruyn, “Necklace Lie algebras and noncommutative symplectic geometry,” Math. Z. 240 (1), 141–167 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Bondal and I. Zhdanovskiy, “Representation theory for system of projectors and discrete Laplace operator,” Preprint IPMU13-0001 (Kavli Inst. Phys. Math. Universe, Kashiwa, 2013), http://research.ipmu.jp/ipmu/sysimg/ipmu/1012.pdf

  4. A. Bondal and I. Zhdanovskiy, “Orthogonal pairs and mutually unbiased bases,” J. Math. Sci. 216 (1), 23–40 (2016) [repr. from Zap. Nauchn. Semin. POMI 437, 35–61 (2015)].

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Bondal and I. Zhdanovskiy, “Symplectic geometry of unbiasedness and critical points of a potential,” in Primitive Forms and Related Subjects—Kavli IPMU 2014 (Math. Soc. Japan, Tokyo, 2019), Adv. Stud. Pure Math. 83, pp. 1–18.

    MATH  Google Scholar 

  6. G. Castelnuovo, “Su certi gruppi associati di punti,” Rend. Circ. Mat. Palermo 3, 179–192 (1889).

    Article  MATH  Google Scholar 

  7. L. O. Chekhov, M. Mazzocco, and V. N. Rubtsov, “Painlevé monodromy manifolds, decorated character varieties, and cluster algebras,” Int. Math. Res. Not. 2017 (24), 7639–7691 (2017).

    MATH  Google Scholar 

  8. W. Crawley-Boevey, “Geometry of the moment map for representations of quivers,” Compos. Math. 126 (3), 257–293 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  9. W. Crawley-Boevey, “On matrices in prescribed conjugacy classes with no common invariant subspace and sum zero,” Duke Math. J. 118 (2), 339–352 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  10. G. M. D’Ariano, P. Lo Presti, and P. Perinotti, “Classical randomness in quantum measurements,” J. Phys. A: Math. Gen. 38 (26), 5979–5991 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  11. I. Dolgachev and D. Ortland, Point Sets in Projective Spaces and Theta Functions (Soc. Math. France, Paris, 1988), Astérisque 165.

    MATH  Google Scholar 

  12. D. Eisenbud and S. Popescu, “The projective geometry of the Gale transform,” J. Algebra 230 (1), 127–173 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  13. S. N. Filippov, T. Heinosaari, and L. Leppäjärvi, “Necessary condition for incompatibility of observables in general probabilistic theories,” Phys. Rev. A 95 (3), 032127 (2017).

    Article  Google Scholar 

  14. I. Gelfand and M. Neumark, “On the imbedding of normed rings into the ring of operators in Hilbert space,” Mat. Sb. 12 (2), 197–217 (1943).

    MathSciNet  MATH  Google Scholar 

  15. E. Haapasalo, T. Heinosaari, and J.-P. Pellonpää, “Quantum measurements on finite dimensional systems: Relabeling and mixing,” Quantum Inf. Process. 11 (6), 1751–1763 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  16. T. Heinosaari, M. A. Jivulescu, and I. Nechita, “Random positive operator valued measures,” J. Math. Phys. 61 (4), 042202 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Heinosaari and M. Ziman, The Mathematical Language of Quantum Theory: From Uncertainty to Entanglement (Cambridge Univ. Press, Cambridge, 2012).

    MATH  Google Scholar 

  18. A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory (Nauka, Moscow, 1980; North-Holland, Amsterdam, 1982).

    Google Scholar 

  19. V. G. Kac, “Infinite root systems, representations of graphs and invariant theory,” Invent. Math. 56, 57–92 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  20. I. V. Karzhemanov, “Maximum likelihood degree of surjective rational maps,” arXiv: 1811.05176v1 [math.AG].

  21. I. Karzhemanov and I. Zhdanovskiy, “Some properties of surjective rational maps,” Eur. J. Math. 4 (1), 326–329 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  22. A. S. Kocherova and I. Yu. Zhdanovskiy, “On the algebra generated by projectors with commutator relation,” Lobachevskii J. Math. 38 (4), 670–687 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  23. A. S. Kocherova and I. Yu. Zhdanovskiy, “Partial abelianization of free product of algebras,” arXiv: 1912.05256 [math.RT].

  24. B. Kostant, “On convexity, the Weyl group and the Iwasawa decomposition,” Ann. Sci. Éc. Norm. Supér. 6, 413–455 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  25. K. Kraus, States, Effects, and Operations: Fundamental Notions of Quantum Theory (Springer, Berlin, 1983), Lect. Notes Phys. 190.

    Book  MATH  Google Scholar 

  26. C. T. Simpson, “Products of matrices,” in Differential Geometry, Global Analysis, and Topology: Proc. Spec. Session Can. Math. Soc. Summer Meet., Halifax, 1990 (Am. Math. Soc., Providence, RI, 1991), CMS Conf. Proc. 12, pp. 157–185.

    MATH  Google Scholar 

  27. I. Yu. Zhdanovskiy, “Homotopes of finite-dimensional algebras,” Commun. Algebra 49 (1), 43–57 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  28. I. Yu. Zhdanovskiy and A. S. Kocherova, “Algebras of projectors and mutually unbiased bases in dimension 7,” J. Math. Sci. 241 (2), 125–157 (2019) [transl. from Itogi Nauki Tekh., Ser.: Sovrem. Mat. Prilozh., Temat. Obz. 138, 19–49 (2017)].

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We are grateful to Grigory Amosov, Alexei Bondal, and Ilya Karzhemanov for very fruitful discussions and support.

Funding

The second author was supported in part by the Russian Foundation for Basic Research, project no. 18-01-00908. The work was also supported by the HSE Basic Research Program and the Russian Academic Excellence Project “5-100.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kocherova.

Additional information

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2021, Vol. 313, pp. 109–123 https://doi.org/10.4213/tm4167.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocherova, A.S., Zhdanovskiy, I.Y. Some Algebraic and Geometric Aspects of Quantum Measurements. Proc. Steklov Inst. Math. 313, 99–112 (2021). https://doi.org/10.1134/S0081543821020103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543821020103

Navigation