Skip to main content
Log in

A Map between Time-Dependent and Time-Independent Quantum Many-Body Hamiltonians

  • Research Articles
  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

Given a time-independent Hamiltonian \(\widetilde H\), one can construct a time-dependent Hamiltonian \(H_t\) by means of the gauge transformation \(H_t=U_t\kern1pt \widetilde H \kern1pt U^\dagger_t-i\kern1pt U_t\kern1pt\partial_t U_t^\dagger\). Here \(U_t\) is the unitary transformation that relates the solutions of the corresponding Schrödinger equations. In the many-body case one is usually interested in Hamiltonians with few-body (often, at most two-body) interactions. We refer to such Hamiltonians as physical. We formulate sufficient conditions on \(U_t\) ensuring that \(H_t\) is physical as long as \(\widetilde H\) is physical (and vice versa). This way we obtain a general method for finding pairs of physical Hamiltonians \(H_t\) and \(\widetilde H\) such that the driven many-body dynamics governed by \(H_t\) can be reduced to the quench dynamics due to the time-independent \(\widetilde H\). We apply this method to a number of many-body systems. First we review the mapping of a spin system with isotropic Heisenberg interaction and arbitrary time-dependent magnetic field to a time-independent system without a magnetic field [F. Yan, L. Yang, and B. Li, Phys. Lett. A 251, 289–293; 259, 207–211 (1999)]. Then we demonstrate that essentially the same gauge transformation eliminates an arbitrary time-dependent magnetic field from a system of interacting fermions. Further, we apply the method to the quantum Ising spin system and a spin coupled to a bosonic environment. We also discuss a more general situation where \(\widetilde H = \widetilde H_t\) is time-dependent but dynamically integrable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We are grateful to A. Polkovnikov for pointing to this equation.

References

  1. P. Barmettler, D. Fioretto, and V. Gritsev, “Non-equilibrium dynamics of Gaudin models,” Europhys. Lett. 104 (1), 10004 (2013).

    Article  Google Scholar 

  2. M. V. Berry, “Transitionless quantum driving,” J. Phys. A: Math. Theor. 42 (36), 365303 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Blanes, F. Casas, J. A. Oteo, and J. Ros, “The Magnus expansion and some of its applications,” Phys. Rep. 470 (5–6), 151–238 (2009).

    Article  MathSciNet  Google Scholar 

  4. A. del Campo, “Shortcuts to adiabaticity by counterdiabatic driving,” Phys. Rev. Lett. 111 (10), 100502 (2013).

    Article  Google Scholar 

  5. A. del Campo, M. M. Rams, and W. H. Zurek, “Assisted finite-rate adiabatic passage across a quantum critical point: Exact solution for the quantum Ising model,” Phys. Rev. Lett. 109 (11), 115703 (2012).

    Article  Google Scholar 

  6. Y. Castin, “Exact scaling transform for a unitary quantum gas in a time dependent harmonic potential,” C. R. Phys. 5 (3), 407–410 (2004).

    Article  Google Scholar 

  7. Y. Castin and R. Dum, “Bose–Einstein condensates in time dependent traps,” Phys. Rev. Lett. 77 (27), 5315–5319 (1996).

    Article  Google Scholar 

  8. A. Colcelli, G. Mussardo, G. Sierra, and A. Trombettoni, “Integrable Floquet Hamiltonian for a periodically tilted 1D gas,” Phys. Rev. Lett. 123 (13), 130401 (2019).

    Article  MathSciNet  Google Scholar 

  9. L. D’Alessio and M. Rigol, “Long-time behavior of isolated periodically driven interacting lattice systems,” Phys. Rev. X 4 (4), 041048 (2014).

    Google Scholar 

  10. A. Das, “Exotic freezing of response in a quantum many-body system,” Phys. Rev. B 82 (17), 172402 (2010).

    Article  Google Scholar 

  11. S. Deffner, C. Jarzynski, and A. del Campo, “Classical and quantum shortcuts to adiabaticity for scale-invariant driving,” Phys. Rev. X 4 (2), 021013 (2014).

    Google Scholar 

  12. M. Demirplak and S. A. Rice, “Adiabatic population transfer with control fields,” J. Phys. Chem. A 107 (46), 9937–9945 (2003).

    Article  Google Scholar 

  13. M. Demirplak and S. A. Rice, “Assisted adiabatic passage revisited,” J. Phys. Chem. B 109 (14), 6838–6844 (2005).

    Article  Google Scholar 

  14. J. Dziarmaga, “Dynamics of a quantum phase transition: Exact solution of the quantum Ising model,” Phys. Rev. Lett. 95 (24), 245701 (2005).

    Article  Google Scholar 

  15. A. Eckardt, “Colloquium: Atomic quantum gases in periodically driven optical lattices,” Rev. Mod. Phys. 89 (1), 011004 (2017).

    Article  MathSciNet  Google Scholar 

  16. A. Eckardt, P. Hauke, P. Soltan-Panahi, C. Becker, K. Sengstock, and M. Lewenstein, “Frustrated quantum antiferromagnetism with ultracold bosons in a triangular lattice,” Europhys. Lett. 89 (1), 10010 (2010).

    Article  Google Scholar 

  17. I. Ermakov and T. Byrnes, “Time dynamics of Bethe ansatz solvable models,” Phys. Rev. B 101 (5), 054305 (2020).

    Article  Google Scholar 

  18. F. H. L. Essler, H. Frahm, F. Göhmann, A. Klümper, and V. E. Korepin, The One-Dimensional Hubbard Model (Cambridge Univ. Press, Cambridge, 2005).

    Book  MATH  Google Scholar 

  19. R. P. Feynman, Quantum Electrodynamics (CRC Press, Boca Raton, FL, 2018).

    Book  Google Scholar 

  20. D. Fioretto, J.-S. Caux, and V. Gritsev, “Exact out-of-equilibrium central spin dynamics from integrability,” New J. Phys. 16 (4), 043024 (2014).

    Article  Google Scholar 

  21. O. Gamayun, A. Slobodeniuk, J.-S. Caux, and O. Lychkovskiy, “Nonequilibrium phase transition in transport through a driven quantum point contact,” Phys. Rev. B 103 (4), L041405 (2021).

    Article  Google Scholar 

  22. X.-C. Gao, J.-B. Xu, and T.-Z. Qian, “Formally exact solution and geometric phase for the spin-j system,” Phys. Lett. A 152 (9), 449–452 (1991).

    Article  MathSciNet  Google Scholar 

  23. M. P. Grabowski and P. Mathieu, “Quantum integrals of motion for the Heisenberg spin chain,” Mod. Phys. Lett. A 9 (24), 2197–2206 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  24. V. Gritsev, P. Barmettler, and E. Demler, “Scaling approach to quantum non-equilibrium dynamics of many-body systems,” New J. Phys. 12 (11), 113005 (2010).

    Article  MATH  Google Scholar 

  25. V. Gritsev and A. Polkovnikov, “Integrable Floquet dynamics,” SciPost Phys. 2 (3), 021 (2017).

    Article  Google Scholar 

  26. N. Il’in, A. Aristova, and O. Lychkovskiy, “Adiabatic theorem for closed quantum systems initialized at finite temperature,” arXiv: 2002.02947 [quant-ph].

  27. G. Jotzu et al., “Experimental realization of the topological Haldane model with ultracold fermions,” Nature 515 (7526), 237–240 (2014).

    Article  Google Scholar 

  28. Yu. Kagan, E. L. Surkov, and G. V. Shlyapnikov, “Evolution of a Bose-condensed gas under variations of the confining potential,” Phys. Rev. A 54 (3), R1753–R1756 (1996).

    Article  Google Scholar 

  29. T. Kato, “On the adiabatic theorem of quantum mechanics,” J. Phys. Soc. Japan 5 (6), 435–439 (1950).

    Article  Google Scholar 

  30. M. Kolodrubetz, D. Sels, P. Mehta, and A. Polkovnikov, “Geometry and non-adiabatic response in quantum and classical systems,” Phys. Rep. 697, 1–87 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Lazarides, A. Das, and R. Moessner, “Equilibrium states of generic quantum systems subject to periodic driving,” Phys. Rev. E 90 (1), 012110 (2014).

    Article  Google Scholar 

  32. Y.-Z. Lai, J.-Q. Liang, H. J. W. Müller-Kirsten, and J.-G. Zhou, “Time-dependent quantum systems and the invariant Hermitian operator,” Phys. Rev. A 53 (5), 3691–3693 (1996).

    Article  Google Scholar 

  33. H. R. Lewis Jr. and W. B. Riesenfeld, “An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field,” J. Math. Phys. 10 (8), 1458–1473 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  34. E. Lieb, T. Schultz, and D. Mattis, “Two soluble models of an antiferromagnetic chain,” Ann. Phys. 16 (3), 407–466 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  35. A. Minguzzi and D. M. Gangardt, “Exact coherent states of a harmonically confined Tonks–Girardeau gas,” Phys. Rev. Lett. 94 (24), 240404 (2005).

    Article  Google Scholar 

  36. P. Pfeuty, “The one-dimensional Ising model with a transverse field,” Ann. Phys. 57 (1), 79–90 (1970).

    Article  Google Scholar 

  37. P. Ponte, A. Chandran, Z. Papić, and D. A. Abanin, “Periodically driven ergodic and many-body localized quantum systems,” Ann. Phys. 353, 196–204 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  38. I. I. Rabi, N. F. Ramsey, and J. Schwinger, “Use of rotating coordinates in magnetic resonance problems,” Rev. Mod. Phys. 26 (2), 167–171 (1954).

    Article  MATH  Google Scholar 

  39. M. Ringel and V. Gritsev, “Dynamical symmetry approach to path integrals of quantum spin systems,” Phys. Rev. A 88 (6), 062105 (2013).

    Article  Google Scholar 

  40. H. Saberi, T. Opatrný, K. Mølmer, and A. del Campo, “Adiabatic tracking of quantum many-body dynamics,” Phys. Rev. A 90 (6), 060301 (2014).

    Article  Google Scholar 

  41. S. Scopa, G. T. Landi, A. Hammoumi, and D. Karevski, “Exact solution of time-dependent Lindblad equations with closed algebras,” Phys. Rev. A 99 (2), 022105 (2019).

    Article  MathSciNet  Google Scholar 

  42. S. Scopa, G. T. Landi, and D. Karevski, “Lindblad–Floquet description of finite-time quantum heat engines,” Phys. Rev. A 97 (6), 062121 (2018).

    Article  Google Scholar 

  43. D. Sels and A. Polkovnikov, “Minimizing irreversible losses in quantum systems by local counterdiabatic driving,” Proc. Natl. Acad. Sci. USA 114 (20), E3909–E3916 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  44. N. A. Sinitsyn, E. A. Yuzbashyan, V. Y. Chernyak, A. Patra, and C. Sun, “Integrable time-dependent quantum Hamiltonians,” Phys. Rev. Lett. 120 (19), 190402 (2018).

    Article  MathSciNet  Google Scholar 

  45. S. J. Wang, F. L. Li, and A. Weiguny, “Algebraic dynamics and time-dependent dynamical symmetry of nonautonomous systems,” Phys. Lett. A 180 (3), 189–196 (1993).

    Article  MathSciNet  Google Scholar 

  46. J. Wei and E. Norman, “Lie algebraic solution of linear differential equations,” J. Math. Phys. 4 (4), 575–581 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  47. L.-A. Wu and D. Segal, “Hamiltonian transformability, fast adiabatic dynamics and hidden adiabaticity,” Sci. Rep. 11 (1), 4648 (2021).

    Article  Google Scholar 

  48. L.-A. Wu, J. Sun, and J.-Y. Zhong, “A new approach to calculating the Berry phase,” Phys. Lett. A 183 (4), 257–262 (1993).

    Article  MathSciNet  Google Scholar 

  49. F. Yan, L. Yang, and B. Li, “Formal exact solution for the Heisenberg spin system in a time-dependent magnetic field and Aharonov–Anandan phase,” Phys. Lett. A 251 (5), 289–293 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  50. F. Yan, L. Yang, and B. Li, “Invariant Hermitian operator and geometric phase for the Heisenberg spin system in a time-dependent magnetic field,” Phys. Lett. A 259 (3–4), 207–211 (1999).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank Vladimir Gritsev for useful discussions. We are also grateful to Adolfo del Campo, Anatoli Polkovnikov, and Stefano Scopa for valuable remarks.

Funding

The work of the second author was supported by the Russian Foundation for Basic Research, project no. 18-32-20218.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksandr V. Gamayun.

Additional information

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2021, Vol. 313, pp. 47–58 https://doi.org/10.4213/tm4159.

Appendix A. Eliminating magnetic field: covariant parametrization

Here we outline the derivation of equations (3.4). First we use a formula for the derivative of the exponential map [3] to obtain an integral representation of \(W_t\):

$$ W_t=i \kern1pt e^{i \kern.5pt {\mathbf K} _t \kern.5pt {\mathbf S} _{\textrm{tot}} }\frac{d}{dt} e^{-i \kern.5pt {\mathbf K} _t \kern.5pt {\mathbf S} _{\textrm{tot}} } = \intop_0^1 dx\, e^{i \kern.5pt x \kern.5pt {\mathbf K} _t \kern.5pt {\mathbf S} _{\textrm{tot}} } (\dot{ {\mathbf K} }_t \kern1pt {\mathbf S} _{\textrm{tot}} ) \kern1pt e^{-i \kern.5pt x \kern.5pt {\mathbf K} _t \kern.5pt {\mathbf S} _{\textrm{tot}} }.$$
(A.1)
To proceed further, we use
$$ e^{i \kern1pt {\mathbf a} {\mathbf S} } ( {\mathbf b} {\mathbf S} ) \kern1pt e^{-i \kern.5pt {\mathbf a} \kern.5pt {\mathbf S} } = \frac1{a^2} ( {\mathbf a} {\mathbf b} ) ( {\mathbf a} {\mathbf S} )- \frac1{a} ( {\mathbf a} {\mathbf b} {\mathbf S} ) \sin a +\biggl( ( {\mathbf b} {\mathbf S} )- \frac1{a^2} ( {\mathbf a} {\mathbf b} ) ( {\mathbf a} {\mathbf S} ) \biggr) \cos a$$
(A.2)
valid for arbitrary vectors \( {\mathbf a} \) and \( {\mathbf b} \) and arbitrary spin \( {\mathbf S} \). Here \(( {\mathbf a} {\mathbf b} )\) denotes the scalar product and \(( {\mathbf a} {\mathbf b} {\mathbf S} )\) denotes the scalar triple product. With the help of this formula, (A.1) can be explicitly integrated. Taking into account that \(U_t H_{\textrm{H}} U_t^ \dagger = H_{\textrm{H}} \) and, consequently, \( {\mathbf B} _t \kern1pt {\mathbf S} _{\textrm{tot}} =W_t\), according to (2.3) and (3.1)–(3.3) we obtain the equation
$$ {\mathbf B} _t = \frac{\sin K}{K} \dot{ {\mathbf K} }_t -\frac{1-\cos K}{K^2} {\mathbf K} _t\times\dot{ {\mathbf K} }_t +\frac1{K^2}\biggl(1-\frac{\sin K}{K} \biggr)( {\mathbf K} _t\dot{ {\mathbf K} }_t) {\mathbf K} _t.$$
(A.3)
Introducing \( {\mathbf K} _t=K_t {\mathbf n} _t\), where \( {\mathbf n} _t\) is a unit vector, one reduces (A.3) to
$$ {\mathbf B} _t = \dot K_t \kern1pt {\mathbf n} _t+\sin K_t \,\dot{ {\mathbf n} }_t -(1-\cos K_t) ( {\mathbf n} _t\times\dot{ {\mathbf n} }_t).$$
(A.4)
By performing a scalar (vector) multiplication of this equation by \( {\mathbf n} _t\) (and doing some additional algebra in the second case), one obtains the first (second) equation in (3.4). Note that equations (A.3) and (A.4) can be more suitable for numerical integration than (3.4).

Appendix B. Eliminating magnetic field: Gauss parametrization

The Gauss parametrization of \(U_t\) reads [39]

$$ U_t=\exp(\xi^+_t S_{\textrm{tot}} ^+) \exp(\xi^z_t S_{\textrm{tot}} ^z) \exp(\xi^-_t S_{\textrm{tot}} ^-),$$
(B.1)
where \( S_{\textrm{tot}} ^\pm= S_{\textrm{tot}} ^x \pm i S_{\textrm{tot}} ^y\). This operator is unitary whenever
$$ \xi^+ =-(\xi^-)^* e^{i\operatorname{Im} \xi^z}\qquad\text{and}\qquad |\xi^-|^2+1=e^{\operatorname{Re} \xi^z}.$$
(B.2)
Note that the first condition above implies \(|\xi^+| =|\xi^-|\).

Equation (2.3) leads to the following differential equations for the functions \(\xi^\pm_t\) and \(\xi^z_t\):

$$ \begin{aligned} \, i \dot \xi^+_t &= B^-_t(\xi^+_t)^2-B_t^z \kern1pt \xi^+_t - B^+_t, \\[4pt] i \dot \xi^z_t &= 2 B^-_t \kern1pt \xi^+_t -B_t^z, \\[4pt] i \dot \xi^-_t &= - B^-_t \kern1pt \exp(\xi^z_t), \end{aligned}$$
(B.3)
where \(B^\pm_t\equiv(B^x_t\mp iB^y_t)/2\) (this definition implies \( {\mathbf B} _t \kern1pt {\mathbf S} _{\textrm{tot}} = B_t^+ S_{\textrm{tot}} ^+ + B_t^- S_{\textrm{tot}} ^- + B_t^z S_{\textrm{tot}} ^z\)). The initial condition is \(\xi^\pm_0=\xi^z_0=0\). In a somewhat different context, the system of equations (B.3) was derived in [39] following the lines of the earlier work [46]. It can be verified that these equations are consistent with conditions (B.2). Note that the first equation in (B.3) is a Riccati equation with a single variable, and the other two are trivially integrated when the solution of the first one is plugged in. These equations are somewhat simpler than the equivalent system (3.4). In addition, the equations in (B.3) have nonsingular right-hand sides, which makes it clear that the solution exists for an arbitrary \(B_t\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamayun, O.V., Lychkovskiy, O.V. A Map between Time-Dependent and Time-Independent Quantum Many-Body Hamiltonians. Proc. Steklov Inst. Math. 313, 41–51 (2021). https://doi.org/10.1134/S008154382102005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S008154382102005X

Keywords

Navigation