Skip to main content
Log in

Should Gold Marker or TEM-ASTAR Characterization Be Used to Determine Oxide Growth Direction?

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Oxidation of chromia-forming alloys (pure chromium, nickel–chromium alloy and ferritic stainless steel alloy) at temperature ranging from 800 to 1050 °C was conducted on samples with or without gold markers applied prior to testing. Gold is often used as a marker in order to identify oxide growth direction. Its localization inside the oxide scale can demonstrate an inward or an outward growth. It is found that gold particles can be found either at the internal metal/oxide interface or inside the scale or again at the external oxide/gas interface on the same sample (on NiCr and stainless steel alloys). For pure chromium oxidation, gold is found inside the chromia scale, at the equiaxed-columnar interface, as expected from ASTAR-TEM characterization. However, photoelectrochemical characterization has shown that gold can modify the semiconducting chromia properties. Finally, gold is not inert in these several conditions and should not be considered in these present cases, but also more generally in most cases, as an appropriate marker. On the contrary, ASTAR maps may permit to access the oxide growth direction without interfering the studied system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W. J. Quadakkers, A. Elschner, and W. Speier, H. Nickel, Applied Surface Science 52, (4), 271–287 (1991).

    Article  CAS  Google Scholar 

  2. S. Chevalier, G. Bonnet, G. Borchardt, J.-C. Colson, and J.-P. Larpin, Ceramics 61, 177–187 (2000).

    CAS  Google Scholar 

  3. J. Pfeil, J. Iron Steel Inst. 119, 501–547 (1929).

    Google Scholar 

  4. P. Sarrazin, A. Galerie, J. Fouletier, Mechanisms of High Temperature Corrosion (Trans Tech Publication edition, 2008).

  5. D. Young, High Temperature and Corrosion of Metals, ed. (2008).

  6. H. Sieber, D. Hesse, X. Pan, S. Senz, and J. Heydenreich, J. Inorg. And Gal. Chem. 622, 1658–1666 (1996).

    CAS  Google Scholar 

  7. X. Ledoux, S. Mathieu, M. Vilasi, Y. Wouters, P. Del-Gallo, and M. Wagner, Oxid. Met. 80, 25–35 (2013).

    Article  CAS  Google Scholar 

  8. Q. Dong, G. Hultquist, G. I. Sproule, and M. J. Graham, Corros. Sci. 49, 3348–3360 (2007).

    Article  CAS  Google Scholar 

  9. L. Latu-Romain, Y. Parsa, S. Mathieu, M. Vilasi, A. Galerie, and Y. Wouters, Corros. Sci. 126, 238–246 (2017).

    Article  CAS  Google Scholar 

  10. Y. Parsa, L. Latu-Romain, Y. Wouters, S. Mathieu, T. Perez, and M. Vilasi, Corros. Sci. 141, 46–52 (2018).

    Article  CAS  Google Scholar 

  11. T. Perez, J. Ghanbaja, S. Mathieu, L. Latu-Romain, M. Vilasi, and Y. Wouters, Scripta Mater. 178, 176–180 (2020).

    Article  CAS  Google Scholar 

  12. L. Latu-Romain, Y. Parsa, S. Mathieu, M. Vilasi, and Y. Wouters, Oxid. Met. 90, (3–4), 255–266 (2018).

    Article  CAS  Google Scholar 

  13. L. Latu-Romain, Y. Parsa, S. Mathieu, M. Vilasi, and Y. Wouters, Oxid. Met. 90, (3–4), 267–277 (2018).

    Article  CAS  Google Scholar 

  14. E. Rauch and M. Véron, Automated crystal orientation and phase mapping in TEM. Mater. Charact. 98, 1–9 (2014).

    Article  CAS  Google Scholar 

  15. L. Latu-Romain, Y. Parsa, S. Mathieu, M. Vilasi, M. Ollivier, A. Galerie, and Y. Wouters, Oxid. Met. 86, (5), 497–509 (2016).

    Article  CAS  Google Scholar 

  16. Z. Wu, J. Deng, S. Xie, H. Yang, X. Zhao, K. Zhang, H. Lin, H. Dai, and G. Guo, Microporous and Mesoporous Materials 224, 311–322 (2016).

    Article  CAS  Google Scholar 

  17. M. Eichelbaum, K. Rademann, R. Müller, M. Radtke, H. Riesemeier, and W. Görner, Angew Chem. Int. 44, 7905–7909 (2005).

    Article  CAS  Google Scholar 

  18. G. Mie, Annalen der Physik 25, 377 (1908).

    Article  CAS  Google Scholar 

  19. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).

    Article  CAS  Google Scholar 

  20. P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, Nanotoday 2, 18 (2007).

    Article  Google Scholar 

  21. W.A. Weyl, Coloured Glasses (The Society of Glass Technology, 1951).

  22. J. Zurek, D. J. Young, E. Essuman, M. Hänsel, H. J. Penkalla, L. Niewolak, and W. J. Quadakkers, Materials Science and Engineering A 477, 259–270 (2008).

    Article  Google Scholar 

  23. D. Nguyen, J. Zhang, and D. J. Young, Corros. Sci. 112, 110–127 (2016).

    Article  CAS  Google Scholar 

  24. M. R. Ardigo-Besnard, I. Popa, O. Heintz, R. Chassagnon, M. Vilasi, F. Herbst, P. Girardon, and S. Chevalier, Applied Surface Science 412, 196–206 (2017).

    Article  CAS  Google Scholar 

  25. T. Roy, L. Latu-Romain, I. Guillotte, B. Latouche, Y. Wouters, Oxid. Met., to be published.

  26. R. Prescott and M. J. Graham, Oxid. Met. 38, (3/4), 1992 (233–254).

    Article  CAS  Google Scholar 

  27. E. W. A. Young, H. E. Bishop, and J. H. W. De Wit, Surf. Interface Anal. 9, 163–168 (1986).

    Article  CAS  Google Scholar 

  28. F. Czerwinski, Acta Materialia 48, (3), 721–733 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the French National Research Agency (ANR) through the PSEUDO project. The authors acknowledge the facilities, and the scientific and technical assistance of the CMTC characterization platform of Grenoble INP supported by the Centre of Excellence of Multifunctional Architectured Materials "CEMAM" n°AN-10-LABX-44-01 funded by the "Investments for the Future" Program. The authors would like also to thank Florence Robaut for FIB-SEM preparation and Gilles Renou for TEM microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Latu-Romain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latu-Romain, L., Roy, T., Perez, T. et al. Should Gold Marker or TEM-ASTAR Characterization Be Used to Determine Oxide Growth Direction?. Oxid Met 96, 201–211 (2021). https://doi.org/10.1007/s11085-021-10042-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-021-10042-x

Keywords

Navigation