Skip to main content
Log in

Improvement on cyclic controlled teleportation by using a seven-qubit entangled state

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Recently, Sang [Int. J. Theor. Phys. 57, 3835–3838 (2018)] proposed a scheme for cyclic controlled quantum teleportation (CYCQT) of three arbitrary single-qubit states by utilizing a seven-qubit entangled state as the quantum channel shared by the four parties Alice, Bob, Charlie and David. In this scheme, single-qubit state is teleported by Alice to Bob, Bob teleports his single-qubit state to Charlie and Charlie teleports his single-qubit state to Alice. It is claimed that all the three participants Alice, Bob and Charlie cannot reconstruct the desired teleported state without the help of the controller David. Contrary to this, we show that the two involved participants Alice and Charlie can reconstruct the desired teleported state without the permission of controller. The controller David has no control over the teleportation processes Bob to Charlie and Charlie to Alice. To resolve this issue, we propose a modification to Sang’s scheme for CYCQT. Our scheme may play an important for secure quantum communication among the quantum nodes of a quantum network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agrawal, P., Pati, A.K.: Probabilistic quantum teleportation. Phys. Lett. A 305, 12–17 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  • Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  • Borras, A., Plastino, A.R., Batle, J., Zander, C., Casas, M., Plastino, A.: Multiqubit systems: highly entangled states and entanglement distribution. J. Phys. A: Math. Theor. 40, 13407–13421 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  • Boschi, D., Branca, S., De Martini, F., Hardy, L., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  • Cao, M., Zhu, S.: Thermal entanglement between alternate qubits of a four-qubit Heisenberg XX chain in a magnetic field. Phys. Rev. A. 71, 034311 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  • Chen, Y.: Bidirectional controlled quantum teleportation by using five-qubit entangled state. Int J Theor Phys 53, 1454–1458 (2014)

    MATH  Google Scholar 

  • Chen, Y.X., Du, J., Liu, S.-Y., Wang, X.-H.: Cyclic quantum teleportation. Quantum Inf. Process. 16, 201 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  • Cheung, C.-Y., Zhang, Z.-J.: Criterion for faithful teleportation with an arbitrary multiparticle channel. Phys. Rev. A. 80, 022327 (2009)

    ADS  Google Scholar 

  • Choudhury, B.S., Samanta, S.: A controlled protocol for asymmetric cyclic (A ⇒ B ⇒ C⇒ A) quantum state transfer between three parties. Phys. Scr. 95(1), 015101 (2020). https://doi.org/10.1088/1402-4896/ab3d43

    Article  ADS  Google Scholar 

  • Deng, F.G.: Comment on “Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement. Phys. Rev. a. 72, 036301 (2005)

    ADS  Google Scholar 

  • Dik, B., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H.,  Zeilinger, A.: “Experimental quantum teleportation”, Nature 390, 575–579 (1997); Phil. Trans. R. Soc. Lond. A 356, 1733–1737 (1998).

  • Dong, J., Teng, J.F.: Controlled teleportation of an arbitrary n-qudit state using nonmaximally entangled GHZ states. Eur. Phys. J. D 49, 129–134 (2008)

    ADS  Google Scholar 

  • Duan, Y.-J., Zha, X.-W.: Bidirectional quantum controlled teleportation via a six-qubit entangled state. Int. J. Theor. Phys. 53, 3780–3786 (2014)

    MATH  Google Scholar 

  • Duan, Y.-J., Zha, X.-W., Sun, X.-M., Xia, J.-F.: Bidirectional quantum controlled teleportation via a maximally seven-qubit entangled state. Int. J. Theor. Phys. 53, 2697–2707 (2014)

    MATH  Google Scholar 

  • Einstein, A., Podolosky, B., Rosen, N.: Can quantum mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    ADS  MATH  Google Scholar 

  • Endrejat, Jochen, Büttner, Helmut: Characterization of entanglement of more than two qubits with Bell inequalities and global entanglement. Phys. Rev. A 71, 012305 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  • Facchi, P., Florio, G., Parisi, G., Pascazio, S.: Maximally multipartite entangled states. Phys. Rev. A 77, 060304 (2008)

    ADS  MathSciNet  Google Scholar 

  • Facchi, P., Florio, G., Marzolino, U., Parisi, G., Pascazio, S.: Classical statistical mechanics approach to multipartite entanglement. J. Phys. A: Math. Theor. 43, 225303 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  • Gavin, K.: Brennen, “An observable measure of entanglement for pure states of multi-qubit systems.” Quantum Inf. Comput. 3, 619–626 (2003)

    MathSciNet  Google Scholar 

  • Gu, J., Hwang, T., Tsai, C.: On the controlled cyclic quantum teleportation of an arbitrary two-qubit entangled state by using a ten-qubit entangled state. Int. J. Theor. Phys. 59, 200–205 (2020)

    MATH  Google Scholar 

  • Hassanpour, S., Houshmand, M.: Bidirectional teleportation of a pure EPR state by using GHZ states. Quantum. Inf. Process. 15, 905–912 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  • Hong, L.U.: Probabilistic teleportation of the three-particle entangled state via entanglement swapping. Chin. Phys. Lett. 18, 1004 (2001)

    Google Scholar 

  • Javed, S., Prakash, R., Prakash, H.: “High Success Perfect Transmission of 1-Qubit Information Using Purposefully Delayed Sharing of Non-Maximally Entangled 2-Qubit Resource and Repeated Generalized Bell-State Measurements” arXiv:1902.03403 [quant-ph].

  • Jin, X.-M., Ren, J.-G., Yang, B., Yi, Z.-H., Zhou, F., Xiao-Fan, Xu., Wang, S.-K., Yang, D., Yuan-Feng, Hu., Jiang, S., Yang, T., Yin, H., Chen, K., Peng, C.-Z., Pan, J.-W.: Experimental free-space quantum teleportation. Nat. Photonics 4, 376–381 (2010)

    ADS  Google Scholar 

  • Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998)

    ADS  MathSciNet  Google Scholar 

  • Lakshminarayan, A., Subrahmanyam, V.: Multipartite entanglement in a one-dimensional time-dependent Ising model. Phys. Rev. A 71, 062334 (2005)

    ADS  Google Scholar 

  • Lee, J., Min, H., Oh, S.D.: Multipartite entanglement for entanglement teleportation. Phys. Rev. a. 66, 052318 (2002)

    ADS  Google Scholar 

  • Li, Y., Jin, X.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf. Process. 15, 929–945 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  • Li, Y.-H., Qiao, Yi., Sang, M.-H., Nie, Y.-Y.: Controlled cyclic quantum teleportation of an arbitrary two-qubit entangled state by using a ten-qubit entangled state. Int. J. Theor. Phys. 58, 1541–1545 (2019)

    MATH  Google Scholar 

  • Luo, Yi-Han., Zhong, Han-Sen., Erhard, Manuel, Wang, Xi-Lin., Peng, Li-Chao., Krenn, Mario, Jiang, Xiao, Li, Li., Liu, Nai-Le., Chao-Yang, Lu., Zeilinger, Anton, Pan, Jian-Wei.: Quantum teleportation in High Dimentions. Phys. Rev. Lett. 123, 070505 (2019)

    ADS  Google Scholar 

  • Meyer, D.A., Wallach, N.R.: Global entanglement in multiparticle systems. J. Math. Phys. 43, 4273 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  • Nie, Y.Y., Hong, Z.-H., Huang, Y.-B., Yi, X.-J., Li, S.-S.: Non-maximally entangled controlled teleportation using four particles cluster states. Int. J. Theor. Phys. 48, 1485–1490 (2009)

    MathSciNet  MATH  Google Scholar 

  • Prakash, H., Verma, V.: Minimum assured fidelity and minimum average fidelity in quantum teleportation of single qubit using non-maximally entangled states. Quantum Inf. Process. 11, 1951–1959 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  • Prakash, H., Chandra, N., Prakash, R., Dixit, A.: A generalized condition for teleportation of the quantum state of an assembly of N two level system. Mod. Phys. Lett. B 21, 2019–2023 (2007)

    ADS  MATH  Google Scholar 

  • Qin, Z.X., Min, L.Y., Yun, Z.Z., Wen, Z., Jun, Z.Z.: Simpler criterion and flexibility of operation complexity for perfectly teleporting arbitrary n-qubit state with 2n-qubit pure state. Science China 53, 2069–2073 (2010)

    Google Scholar 

  • Ren, J.-G., Ping, Xu., Yong, H.-L., Zhang, L., Liao, S.-K., Yin, J., Liu, W.-Y., Cai, W.-Q., Yang, M., Li, Li., Yang, K.-X., Han, X., Yao, Y.-Q., Li, Ji., Hai-Yan, Wu., Wan, S., Liu, L., Liu, D.-Q., Kuang, Y.-W., He, Z.-P., Shang, P., Guo, C., Zheng, R.-H., Tian, K., Zhu, Z.-C., Liu, N.-L., Chao-Yang, Lu., Shu, R., Chen, Y.-A., Peng, C.-Z., Wang, J.-Y., Pan, J.-W.: Ground-to-satellite quantum teleportation. Nature 549, 71–73 (2017)

    ADS  Google Scholar 

  • Rigolin, G.: Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement. Phys. Rev. a. 71, 032303 (2005)

    ADS  Google Scholar 

  • Roa, L., Groiseau, C.: Probabilistic teleportation without loss of information. Phys. Rev. A 91, 012344 (2015)

    ADS  MathSciNet  Google Scholar 

  • Sang, Z.-W.: Cyclic controlled teleportation by using a seven-qubit entangled state. Int. J. Theor. Phys. 57, 3835–3838 (2018)

    MathSciNet  MATH  Google Scholar 

  • Shao, Z.L., Long, Y.: Circular controlled quantum teleportation by a genuine seven-qubit entangled state. Int. J. Theor. Phys. 58, 1957–1967 (2019)

    MathSciNet  MATH  Google Scholar 

  • Sun, S., Li, L., Zhang, H.: Quantum cyclic controlled teleportation of unknown states with arbitrary number of qubits by using seven-qubit entangled channel. Int. J. Theor. Phys. 59, 1017–1030 (2020)

    MathSciNet  MATH  Google Scholar 

  • Verma, V.: Bidirectional quantum teleportation and cyclic quantum teleportation of multi-qubit entangled states via G-state. Int. J. Mod. Phys. B 34(28), 2050261 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  • Verma, V.: Bidirectional quantum teleportation by using two Ghz-states as the quantum channel. IEEE Commun. Lett. 25(3), 936–939 (2020b)

    Google Scholar 

  • Verma, V.: Bidirectional quantum teleportation of two-qubit entangled state by using G-state as a quantum channel. Physica Scripta 95, 115101 (2020)

    ADS  Google Scholar 

  • Verma, V.: Bidirectional controlled quantum teleportation of multi-qubit entangled states via five-qubit entangled state. Physica Scripta 96, 035105 (2021)

    ADS  Google Scholar 

  • Verma, V., Prakash, H.: Standard Quantum Teleportation and Controlled Quantum Teleportation of Arbitrary N-Qubit Information State. Int. J. Theor. Phys. 55, 2061–2070 (2016)

    MATH  Google Scholar 

  • Weinstein, Y.S., Hellberg, C.S.: Entanglement generation of nearly random operators. Phys. Rev. Lett. 95, 030501 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  • Weinstein, Y.S., Hellberg, C.S.: Matrix-element distributions as a signature of entanglement generation. Phys. Rev. A 72, 022331 (2005)

    ADS  Google Scholar 

  • Yan, F., Wang, D.: Probabilistic and controlled teleportation of unknown quantum states. Phys. Lett. A 316, 297–303 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  • Yang, C.P., Guo, G.C.: Multiparticle Generalization of Teleportation. Chin. Phys. Lett. 17, 162–164 (2000)

    ADS  Google Scholar 

  • Yang, C.P., Chu, S.I., Han, S.: Efficient many-party controlled teleportation of multiqubit quantum information via entanglement. Phys. Rev A 70, 022329 (2004)

    ADS  Google Scholar 

  • Yang, Y., Zha, X., Yu, Y.: Asymmetric Bidirectional Controlled Teleportation via Seven-qubit Cluster State. Int. J. Theor. Phys. 55, 4197–4204 (2016)

    MATH  Google Scholar 

  • Yeo, Y., Chua, W.K.: Teleportation and dense coding with genuine multipartite entanglement. Phys. Rev. Lett. 96, 060502 (2006)

    ADS  Google Scholar 

  • Yin, J., Ren, J.-G., He, Lu., Cao, Y., Yong, H.-L., Yu-Ping, Wu., Liu, C., Liao, S.-K., Zhou, F., Jiang, Y., Cai, X.-D., Ping, Xu., Pan, G.-S., Jia, J.-J., Huang, Y.-M., Yin, H., Wang, J.-Y., Chen, Y.-A., Peng, C.-Z., Pan, J.-W.: Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature 488, 185–188 (2012)

    ADS  Google Scholar 

  • Zha, X.W., Zou, Z.C., Qi, J.X., Song, H.Y.: Bidirectional quantum-controlled teleportation via Five-Qubit cluster state. Int. J. Theor. Phys. 52, 1740–1744 (2013)

    MathSciNet  Google Scholar 

  • Zhang, Q., Goebel, A., Wagenknecht, C., Chen, Y.-A., Zhao, Bo., Yang, T., Mair, A., Schmiedmayer, J., Pan, J.-W.: Experimental quantum teleportation of a two-qubit composite system. Nature Phys. 2, 678–682 (2006)

    ADS  Google Scholar 

Download references

Acknowledgements

DY acknowledges financial support from UGC for UGC Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhiraj Yadav.

Ethics declarations

Conflicts of interest

Authors do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, V., Yadav, D. & Mishra, D.K. Improvement on cyclic controlled teleportation by using a seven-qubit entangled state. Opt Quant Electron 53, 448 (2021). https://doi.org/10.1007/s11082-021-03098-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03098-1

Keywords

Navigation