Skip to main content
Log in

Simulation of wagon wheel optical fiber biosensor for quick and easy detection of cancer cells

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this study, a portable micro-structured three-channel plasmonic biosensor was simulated using the finite element method. The main feature of the proposed biosensor was the presence of three resonant wavelengths for a given biomaterial. This feature reduces measurement error as compared with the single-read biosensor. A high refractive index resolution in the order of 10–6 and sensitivity in the order of 105 was calculated for the proposed biosensor. Considering refractive indices of several samples containing cancer cells, such as Jurkat, HeLa, PC12, and MDA-MB-231, which are respectively indicator cells for leukemia, cervical cancer, Adrenal medulla cells, and breast cancer, the three resonant wavelengths were determined for samples. The sensitivity of this biosensor as a function of its length was investigated for a given cancer cell sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmadi, A.R.: SyNA, A general purpose finite element software system. In: Computational Research Center at Graduate University of Advanced Technology, Kerman, Iran, pp. 37–68 (2010)

  • Akowuah, E.K., Gorman, T., Haxha, S., Oliver, J.V.: Dual channel planar waveguide surface plasmon. J. Opt. Soc. Am. 24, 1423–1429 (2007)

    Article  Google Scholar 

  • Akowuah, E.K., Gorman, T., Haxha, S., Oliver, J.V.: Dual channel planar waveguide surface plasmon resonance biosensor for an aqueous environment. Opt. Express. 18, 24412–24422 (2010)

    Article  ADS  Google Scholar 

  • Bateman, J.B., Wagman, J., Carstensen, E.L.: Refraction and absorption of light in bacterial suspensions. Colloid Polym. Sci. 208, 44–58 (1966)

    Google Scholar 

  • Bruno, H.Z., Walter, B.D.: Theory of light scattering and refractive index of solutions of large colloidal particles. J. Phys. Chem. 8, 644–648 (1954)

    Google Scholar 

  • Bryant, F.D., Seiber, B.A., Latimer, P.: Absolute optical cross sections of cells and chloroplasts. Arch. Biochem. Biophys. 135, 79–108 (1969)

    Google Scholar 

  • Gauvreau, B., Hassani, A., Fassi Fehri, M., Kabashin, A., Skorobogatiy, M.A.: Photonic bandgap fiber-based surface plasmon resonance sensors. Opt. Express. 15, 11413–11426 (2007)

    Article  ADS  Google Scholar 

  • Hautakorpi, M., Mattinen, M., Ludvigsen, H.: Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber. Opt. Express. 16, 8427–8432 (2008)

    Article  ADS  Google Scholar 

  • Hielscher, A.H., Mourant, J.R., Bigio, I.J.: Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions. Appl. Opt. 36, 125–135 (1997)

    Article  ADS  Google Scholar 

  • Hoa, X.D., Kirk, A.G., Tabrizian, M.: Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress. Biosens. Bioelectron. 23, 151–160 (2007)

    Article  Google Scholar 

  • Homola, J.: Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108, 462–493 (2008)

    Article  Google Scholar 

  • Homola, J., Yee, S.S., Gauglitz, G.: Surface plasmon resonance sensors: review. Sens. Actuators B Chem. 54, 3–15 (1999)

    Article  Google Scholar 

  • Homola, J., Vaisocherová, H., Dostálek, J., Piliarik, M.: Multi-analyte surface plasmon resonance biosensing. Methods 37, 26–36 (2005)

    Article  Google Scholar 

  • Hoseinian, M.S., Bolorizadeh, M.A.: Design and simulation of a highly sensitive SPR optical fiber sensor. Photonic Sens. 9, 33–42 (2019)

    Article  ADS  Google Scholar 

  • Hoseinian, M.S., Ahmadi, A.R., Bolorizadeh, M.A.: Fast and accurate detection of cancer cell using a versatile three-channel plasmonic sensor. Proc. SPIE 9921, 992127 (2016)

    Article  Google Scholar 

  • Hussein, M., Awwad, F., Jithin, D., Hasasna, H., Athamneh, K., Iratni, R.: Breast cancer cells exhibits specific dielectric signature in vitro using the open-ended coaxial probe technique from 200 MHz to 13.6 GHz. Sci. Rep. 9, 4681 (2019)

    Article  ADS  Google Scholar 

  • Institute of Medicine (US) and National Research Council (US) Committee on the Early Detection of Breast Cancer; Patlak, M., Nass, S.J., Henderson, I.C., et al. (eds.) Mammography and Beyond: Developing Technologies for the Early Detection of Breast Cancer: A Non-Technical Summary. National Academies Press (US), Washington (DC) (2001)

  • Iqbal, T., Noureen, S., Afsheen, S., Khan, M.Y., Ijaz, M.: Rectangular and sinusoidal Au-grating as plasmonic sensor: a comparative study. Opt. Mater. 99, 109530 (2020)

    Article  Google Scholar 

  • Jabin, M.A., et al.: Surface plasmon resonance based Titanium coated biosensor for cancer cell detection. IEEE Photonics J. 11, 1–10 (2019)

    Article  Google Scholar 

  • Jiang, B.-N., Povineli, L.A., Wu, J.: The origin of spurious solutions in computational electromagnetics. J. Comp. Phys. 125, 1597–1630 (1996)

    Article  MathSciNet  Google Scholar 

  • Liang, X.J., Liu, A.Q., Zhang, X.M., Yap, P.H., Ayi, T.C., Yoon, H.S.: Determination of refractive index for single living cell using integrated biochip. Proc. 13th Int. Conf. Solid-State Sens. Actuators Microsyst. 2, 1712–1715 (2005)

  • Liu, P.Y., Chin, L.K., Ser, W., Chen, H.F., Hsieh, C.M., Lee, C.H., Sung, K.B., Ayi, T.C., Yap, P.H., Liedberg, B., Wang, K., Boirouina, T., Leprince-Wang, Y.: Cell refractive index for cell biology and disease diagnosis: past, present and future. Lab Chip 16, 634–644 (2016)

    Article  Google Scholar 

  • Meshginqalam, B., Barvestani, J.: Aluminum and phosphorene based ultrasensitive SPR biosensor. Opt. Mater. 86, 119–125 (2018)

    Article  ADS  Google Scholar 

  • Mishra, G.P., Kumar, D., Chaudhary, V.S., Murmu, G.: Cancer cell detection by a heart-shaped dual-core photonic crystal fiber sensor. Appl. Opt. 59, 10321–10329 (2020)

    Article  ADS  Google Scholar 

  • Mollah, M.A., Yousufali, M., Ankan, I.M., Rahman, M.M., Sarker, H., Chakrabarti, K.: Twin core photonic crystal fiber refractive index sensor for early detection of blood cancer. Sens. Biosens. Res. 29, 100344 (2020)

    Google Scholar 

  • Niu, L.Y., Wang, Q., Jing, J.Y., Zhao, W.M.: Sensitivity enhanced D-type large-core fiber SPR sensor based on Gold nanoparticle/Au film co-modification. Opt. Commun. 450, 287–295 (2019)

    Article  ADS  Google Scholar 

  • Otto, A.: Excitation of non-radiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. A Hadrons Nucl. 216, 398–410 (1968)

    Article  Google Scholar 

  • Owen, V.: Real-time optical immunosensors—a commercial reality. Biosens. Bioelectron. 12, 1–2 (1997)

    Article  Google Scholar 

  • Parvin, T., Ahmed, K., Alatwi, A.M., Rashed, A.: Differential optical absorption spectroscopy-based refractive index sensor for cancer cell detection. Opt. Rev. 28, 134–143 (2020)

    Article  Google Scholar 

  • Peng, W., Banerji, S., Kim, Y.C., Booksh, K.S.: Investigation of dual-channel fiber-optic surface plasmon resonance sensing for biological applications. Opt. Lett. 30, 2988–2990 (2005)

    Article  ADS  Google Scholar 

  • Rahman, M.S., Hasan, M.R., Rikta, K.A., Anowera, M.S.: A novel graphene coated surface plasmon resonance biosensor with tungsten disulfide (WS2) for sensing DNA hybridization. Opt. Mater. 75, 567–573 (2018)

    Article  ADS  Google Scholar 

  • Richardson, J.H.: Systematic Materials Analysis. Academic Press Inc., New York (1974)

    Google Scholar 

  • Rifat, A.A., Amouzad Mahdiraji, G., Shee, Y.G., Jubayer Shawon, Md., Mahamd Adikan, F.R.: A novel photonic crystal fiber biosensor using surface plasmon, resonance. Procedia Eng. 140, 1–7 (2016)

  • Ritchie, R.H.: Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874–881 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  • Selvendran, S., Susheel, A., Tarun, P.V., Esakki Muthu, K., Sivanantha Raja, A.: A novel surface plasmon based photonic crystal ber sensor. Opt. Quant. Electronics 52, 290 (2020)

    Article  Google Scholar 

  • Shusham, K.N., Ran, M.M., Inum, R., Hossain, M.B.: Graphene coated fiber optic surface plasmon resonance biosensor for the DNA hybridization detection: simulation analysis. Opt. Commun. 383, 186–190 (2017)

    Article  ADS  Google Scholar 

  • Song, H., Wang, Q., Zhao, W.M.: A novel SPR sensor sensitivity-enhancing method for immunoassay by inserting MoS2 nanosheets between metal film and fiber. Opt. Laser Eng. 132, 106135 (2020)

    Article  Google Scholar 

  • Usman, M., Mudassar, A., Momna, I.: Calibration and stability of highly sensitive fibre based laser through relative intensity noise. Phys. Scr. 95, 055505 (2020)

    Article  Google Scholar 

  • Wang, Q., Zhao, W.M.: A comprehensive review of lossy mode resonance-based fiber optic sensors. Opt. Laser Eng. 100, 47–60 (2018)

    Article  ADS  Google Scholar 

  • Yasli, A.: Cancer detection with surface plasmon resonance‑based photonic crystal fiber biosensor. Plasmonics, Published Online, In press (2021)

  • Ying, Y., Wang, J.K., Xu, K., Si, G.Y.: High sensitivity D-shaped optical fiber strain sensor based on surface plasmon resonance. Opt. Commun. 460, 125147 (2020)

    Article  Google Scholar 

  • Zeidan, E., Kepley, C.L., Sayes, C., Sandros, M.G.: Surface plasmon resonance: a label-free tool for cellular analysis. Nanomedicine 10, 1833–1846 (2015)

    Article  Google Scholar 

  • Zhang, M., Zhu, G., Li, T., Lou, X., Zhu, L.: A dual-channel optical fiber sensor based on surface plasmon resonance for heavy metal ions detection in contaminated water. Opt. Commun. 462, 124750 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abolfazl Safaei Bezgabadi.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoseinian, M.S., Ahmadi, A., Safaei Bezgabadi, A. et al. Simulation of wagon wheel optical fiber biosensor for quick and easy detection of cancer cells. Opt Quant Electron 53, 427 (2021). https://doi.org/10.1007/s11082-021-02970-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-02970-4

Keywords

Navigation