Skip to main content
Log in

Performances analysis of InP/InGaAs heterojunction bipolaire phototransistor for different base thicknesses

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The NPN InP/InGaAs heterojunction phototransistor (HPT) is numerically simulated with a two dimensional model based on a finite difference method. The electrical and optical characteristics of HPT are analyzed with different base thickness and compared as the base was scaled from 60 down to 20 nm. The impact of the base thickness on the photocurrent is highlighted and compared with the dark and the photodiode currents. This paper also includes the effect of optical power and base current on the potential, electrons density and energy band diagrams. The results show that responsivity and optical gain are not only strongly dependent on the base thickness but also on the base current. The increasing of the current gain from 60 to 100 as the base was scaled from 60 down to 20 nm. Responsivity of 14.7 A/W for 1100 nm light is achieved when the thickness of base layer is 20 nm. A good qualitative agreement of the numerical and analytical simulated value of responsivity as a function of the wavelength with the existing experimental data was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Abedin, M.N., Refaat, T.F., Sulima, O.V., Singh, U.N.: AlGaAsSb-InGaAsSb HPTs with high optical gain and wide dynamic range. IEEE Trans. Electron Devices 51(12), 2013–2018 (2004)

    Article  ADS  Google Scholar 

  • Ahn, H.S, Park, M.S, Jang, J.H.: Phototransistors based on InP/GaAsSb/InGaAs type-II heterostructures. IEEE Xplore. 20th International Conference on Indium Phosphide and Related Materials (2008)

  • Bonnaud, O.: Physiques des solides, des semiconducteurs et dispositifs. Electronic and Telecommunication.Rennes (2003)

  • Chen, J., Zhu, M.: Performance optimization of Pnp InGaAs/InP heterojunction phototransistors. Appl Phys Mater Sci Proces. 122(12), 1–6 (2016)

    ADS  Google Scholar 

  • Datta, S., Roenker, K.P., Cahay, M.M.: A thermionic-emission-diffusion model for graded base Pnp heterojunction bipolar transistors. J. Appl. Phys. 83(12), 8036–8045(1998)

    Article  ADS  Google Scholar 

  • Dehzangi, A., Haddadi, A., Adhikary, S., Razeghi, M.: Impact of scaling base thickness on the performance of heterojunction phototransistors. Nanotechnology. 28(10), 10LT01 (2017)

  • Fathipour, V., Mohseni, H.: Electron-injection detectors for swept source optical coherence tomography. CLEO-Laser Science to Photonic Applications. OSA, San Jose (2015)

    Book  Google Scholar 

  • Fathipour, V., Jang, S.J., Mohseni, H.: New generation of isolated electron-injection imagers. In IEEE 13th Workshop on Information Optics (WIO), Neuchatel, Switzerland. 1–3 (2014a)

  • Fathipour, V., et al.: Isolated electron injection detectors with high gain and record low dark current at telecom wavelength. IEEE J. Sel. Top. Quantum Electron. 20, 65–70 (2014b)

    Article  ADS  Google Scholar 

  • Fathipour, V., et al.: On the sensitivity of electron-injection detectors at low light level. IEEE Photonics J. 8(3), 6803207 (2016)

    Article  Google Scholar 

  • Haddadi, A., Dehzangi, A., Chevallier, R., Yang, T., Razeghi, M.: Type-II InAs/GaSb/AlSb superlattice-based heterojunction phototransistors: back to the future. Quantum Sensing and Nano Electronics and Photonics Xv. 10540, 1054004 (2018)

    Google Scholar 

  • Helme, J. P., Houston, P. A., Tan, C. H.: Large-signal charge control modeling of photoreceivers for applications up to 40 Gb/s. IEEE J. Quantum Electron. 45(7), 833–839 (2009)

    Article  ADS  Google Scholar 

  • Jung, J.H., Yoon, M.J., Lim, J.W., Lee, Y.H., Lee, K.E., Kim, D.H., Oh, J.H.: High‐performance UV-Vis-NIR phototransistors based on single‐crystalline organic semiconductor-gold hybrid nanomaterials. Adv. Funct. Mater. 27(6), 1604528 (2017)

    Article  Google Scholar 

  • Kamitsuna, H.: Ultrawideband monolithic photoreceivers using HBT compatible HPT’s with novel base circuits, and simultaneously integrated with an HBT amplifier. J. Lightw. Technol. 13(12), 2301–2307 (1995)

    Article  ADS  Google Scholar 

  • Khan, H. A., Rezazadeh, A. A., Subramaniam, S. C.: Spectral response modelling of heterojunction phototransistors for short wavelength transmission. In: Proc. European Microwave Integrated Circuit. 346 (2008)

  • Khan, H. A., Rezazadeh, A. A.: Spectral response modelling of GaAs-based heterojunction phototransistors for short wavelength detection. IET Optoelectron. 4(6), 57–63 (2010)

    Article  Google Scholar 

  • Khan, H. A., Rezazadeh. A. A., Saleem. R.: Impact of collection efficiency on the optical responsivity of lattice matched InP/InGaAs heterojunction phototransistors. Japan J. Appl. Phys. 51(7), 072202 (2012)

    Article  Google Scholar 

  • Kumar, H., Basu, R.: Effect of active layer scaling on the performance of Ge1–x Snx phototransistors. IEEE Trans. Electron Devices. 66, 3867–3873 (2019)

    Article  ADS  Google Scholar 

  • Kumar, H., Basu, R.: Impacts of emitter layer thickness on the cutoff frequency of GeSn/Ge heterojunction phototransistors. Comput. Devices Commun. 147, 222–226 (2021)

    Article  Google Scholar 

  • Leu, L.Y., Gardner, J.T., Forrest, S.R.: A high‐gain, high‐bandwidth In0.53Ga0.47As/InP heterojunction phototransistor for optical communications. J. Appl. Phys. 69(2), 1052 (1991)

    Article  ADS  Google Scholar 

  • Li, J., Dehzangi, A., Wu, D.: Type-II superlattices-based heterojunction phototransistors for high speed applications. Infrared Phys. Technol. 108(3), 103350 (2020)

    Article  Google Scholar 

  • Li, J., Dehzangi, A., Razeghi, M.: Performance analysis of infrared heterojunction phototransistors based on type-II superlattices. Infrared Phys. Technol. 113(14), 103641 (2021)

    Article  Google Scholar 

  • Liu, M., et al.: High-performance InGaAs/InP single-photon avalanche photodiode. IEEE J. Sel. Topics Quantum Electron. 13(4), 887–894 (2007)

    Article  ADS  Google Scholar 

  • Memis, O.G. et al.: A photon detector with very high gain at low bias and at room temperature. Appl. Phys. Lett. 91(17), 171112 (2007)

    Article  ADS  Google Scholar 

  • Movassaghi, Y. et al.: Analytical modeling and numerical simulation of the short-wave infrared electron-injection detectors. Appl. Phys. Lett. 108(12), 121102 (2016)

    Article  ADS  Google Scholar 

  • Park, M. S., Jang, J.H.: Enhancement of optical gain in floating-base InGaP–GaAs heterojunction phototransistors. IEEE Photonics. Technol. Lett. 22(16), 1202–1204 (2010)

    Article  ADS  Google Scholar 

  • Park, M.S., Razaei, M., Barnhart, K., Tan, C.L., Mohseni, H.: Surface passivation and aging of InGaAs/InP heterojunction Phototransistors. Appl. Phys. Lett. 121(23), 233105 (2017)

    Google Scholar 

  • Razaei, M., Park, M.S., Rabinowitz, C., Tan C.L., Wheaton, S., Ulmer, M., Mohseni, H.: InGaAs based heterojunction phototransistors: Viable solution for high speed and low-noise short wave infrared imaging. Appl. Phys. Lett. 114(16), 161101 (2019)

    Article  ADS  Google Scholar 

  • Sett, S., Ghatak, A., Sharma, D., Kumar, G. P., Raychaudhuri, A. K..: Broad band single Germanium nanowire photodetectors with surface oxide-controlled high optical gain. J. Phys. Chem C. 122(15), 8564–8572 (2018)

    Article  Google Scholar 

  • Soci, C., Zhang, A., Xiang, B., Dayeh, S. A., Aplin, D., Park, J., Bao, Y., Lo, H., Wang, D.: ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 7(4), 1003–1009 (2007)

    Article  ADS  Google Scholar 

  • Sridhara, R., Frimel, S.M., Roenker, K.P., Pan, N., Elliott, J.: Performance enhancement of GaInP/GaAs heterojunction bipolar phototransistors using DC base bias. J. Lightw. Technol. 16(6), 1101–1106 (1998)

    Article  ADS  Google Scholar 

  • Yavarishad, N., Hosseini, T., Kheirandish, E., Weber, C.P., Kouklin, N.: Room-temperature self-powered energy photodetector based on optically induced Seebeck effect in Cd3 As2. Appl. Phys. Express. 10(5), 052201 (2017)

    Article  ADS  Google Scholar 

  • Zhang, Y., Li, C., Chen, S.Y., Lai, H.-K., Kang, J.-Y.: Numerical analysis of SiGe heterojunction bipolar phototransistor based on virtual substrate. Solid-State Electron. 52(11), 1782–1790 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Kara Mostefa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kara Mostefa, Z., Bouchareb, M.L. & Chaabi, A. Performances analysis of InP/InGaAs heterojunction bipolaire phototransistor for different base thicknesses. Opt Quant Electron 53, 419 (2021). https://doi.org/10.1007/s11082-021-03077-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03077-6

Keywords

Navigation