Skip to main content
Log in

A novel high-efficiency holography image compression method, based on HEVC, Wavelet, and nearest-neighbor interpolation

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

One of the critical challenges facing 3D video systems and images such as holography lies in their compression technique. High-efficiency video coding (HEVC) has emerged as one of the leading schemes to address this challenge. In this article, a novel method based on wavelet transform is presented to improve HEVC, particularly in digital holography systems (object plane). In this regard, wavelet and resizing are included in the coding process, while extra HEVC decoders and encoders are added to predict and decrease errors in the target. Simulation results reveals that the proposed algorithm reduces Bjøntegaard-Delta (BD) bitrate 17.5% (based on average BD-Rate values) compared to the original HEVC (H.265) scheme while maintaining signal fidelity and even enhancing it slightly. We observe an increased BD-peak-signal-to-noise ratio (BD-PSNR) in real and imaginary parts of digital holograms of high rate quantization values up to 1.1 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Amish F, Bourennane EB (2019) An efficient hardware solution for 3d-HEVC intra-prediction. J Real-Time Image Proc 1–13. https://doi.org/10.1007/s11554-016-0664-1

  2. Bang LT, Ali Z, Quang PD, Park J-H, Kim N (2011) Compression of digital hologram for three-dimensional object using Wavelet-Bandelets transform. Opt Express 19(9):8019. https://doi.org/10.1364/oe.19.008019

    Article  Google Scholar 

  3. Bernardo MV, et al. (2018) Holographic representation: Hologram plane vs. object plane. Signal Process Image Commun. 68:193–206. https://doi.org/10.1016/j.image.2018.08.006

    Article  Google Scholar 

  4. Blinder D, Bruylants T, Stijns E, Ottevaere H, Schelkens P (2013) Wavelet coding of off-axis holographic images. In: Applications of digital image processing XXXVI. https://doi.org/10.1117/12.2027114, vol 8856, p 88561L

  5. Blinder D et al (2015) Open access database for experimental validations of holographic compression engines. In: 2015 7th international workshop on quality of multimedia experience, QoMEX. https://doi.org/10.1109/QoMEX.2015.7148145, p 2015

  6. Blinder D, Ottevaere H, Munteanu A, Schelkens P (2016) Efficient multiscale phase unwrapping methodology with modulo wavelet transform. Opt Express 24(20):23094. https://doi.org/10.1364/oe.24.023094

    Article  Google Scholar 

  7. Chen J, Wang B, Liao J, Cai C (2019) Fast 3d-HEVC inter mode decision algorithm based on the texture correlation of viewpoints. Multimed Tools Appl 78(20):29291–29305. https://doi.org/10.1007/s11042-018-6832-5

    Article  Google Scholar 

  8. Cheremkhin PA, Kurbatova EA (2019) Wavelet compression of off-axis digital holograms using real/imaginary and amplitude/phase parts. Sci Rep. vol. 1:9. https://doi.org/10.1038/s41598-019-44119-0

    Google Scholar 

  9. Corda R, Gilles A, Oh K-J, Pinheiro A, Schelkens P, Perra C (2019) An exploratory study towards objective quality evaluation of digital hologram coding tools, p 49. https://doi.org/10.1117/12.2528402

  10. Darakis E, Naughton TJ, Soraghan JJ (2007) Compression defects in different reconstructions from phase-shifting digital holographic data. Appl Opt. 46 (21):4579–4586. https://doi.org/10.1364/AO.46.004579

    Article  Google Scholar 

  11. Dumic E, Grgic S, Grgic M (2007) The use of wavelets in image interpolation. Possibilities and limitations

  12. Gajitzki P (2015) A new digital image resizing method based on wavelets. In: 2014 11th international symposium on electronics and telecommunications ISETC 2014 - conference proceedings. https://doi.org/10.1109/ISETC.2014.7010791

  13. Hamout H, Elyousfi A (2019) An efficient edge detection algorithm for fast intra-coding for 3D video extension of HEVC. J Real-Time Image Proc 16 (6):2093–2105. https://doi.org/10.1007/s11554-017-0718-z

    Article  Google Scholar 

  14. J. O.-S. L (2017) Center and undefined. AV1 Gets Closer HEVC Gets More Expensive

  15. Karpinsky N, Zhang S (2013) 3-D range geometry video compression with the H.264 codec. Opt. Lasers Eng. 51(5):620–625. https://doi.org/10.1016/j.optlaseng.2012.12.021

    Article  Google Scholar 

  16. Milicevic ZM, Bojkovic ZS (2018) Analysis of high efficiency video coding (HEVC) test model HM-16.18 for P frame processing. In: 2018 26th telecommunications forum TELFOR 2018 - Proceedings. https://doi.org/10.1109/TELFOR.2018.8612061

  17. Pastuszak G, Abramowski A (2016) Algorithm and architecture design of the HEVC/HEVC intra encoder. IEEE Trans. Circuits Syst. Video Technol. 26(1):210–222. https://doi.org/10.1109/TCSVT.2015.2428571

    Article  Google Scholar 

  18. Peixeiro JP, Brites C, Ascenso J, Pereira F (2018) Holographic data coding: Benchmarking and extending HEVC with adapted transforms. IEEE Trans Multimed 20(2):282–297. https://doi.org/10.1109/TMM.2017.2742701

    Article  Google Scholar 

  19. Pinheiro AMG, Pereira M, Bernardo M (2018) Benchmarking coding standards for digital holography represented on the object plane. 18. https://doi.org/10.1117/12.2315361

  20. Saldanha M, Sanchez G, Marcon C, Agostini L (2020) Tile adaptation for workload balancing of 3d-HEVC encoder in homogeneous multicore systems. IEEE Trans Circ Syst I Reg Papers 67(5):1704–1714. https://doi.org/10.1109/TCSI.2020.2977297

    Article  Google Scholar 

  21. Senoh T, Wakunami K, Ichihashi Y, Sasaki H, Oi R, Yamamoto K (2014) Multiview image and depth map coding for holographic TV system. Opt Eng 53(11):112302. https://doi.org/10.1117/1.oe.53.11.112302

    Article  Google Scholar 

  22. Seo YH, Choi HJ, Kim DW (2007) 3-D scanning-based compression technique for digital hologram video. Signal Process Image Commun. 22(2):144–156. https://doi.org/10.1016/j.image.2006.11.007

    Article  Google Scholar 

  23. Sharabayko MP, Ponomarev OG, Chernyak RI (2013) Intra compression efficiency in VP9 and HEVC. Appl Math Sci 7(137–140):6803–6824. https://doi.org/10.12988/ams.2013.311644

    Google Scholar 

  24. Sullivan GJ, Ohm JR, Han WJ, Wiegand T (2012) Overview of the high-efficiency video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 22(12):1649–1668. https://doi.org/10.1109/TCSVT.2012.2221191

    Article  Google Scholar 

  25. Symeonidou A, Blinder D, Ahar A, Schretter C, Munteanu A, Schelkens P (2016) Speckle noise reduction for computer generated holograms of objects with diffuse surfaces. https://doi.org/10.1117/12.2225201, vol 9896, p 98960F

  26. Symeonidou A, Kizhakkumkara RM, Birnbaum T, Schelkens P (2019) Efficient holographic video generation based on rotational transformation of wavefields. Opt Express 27(26):37383. https://doi.org/10.1364/oe.27.037383

    Article  Google Scholar 

  27. Viswanathan K, Gioia P, Morin L (2013) Wavelet compression of digital holograms: Towards a view-dependent framework. In: Applications of digital image processing XXXVI. https://doi.org/10.1117/12.2027199, vol 8856, p 88561N

  28. Viswanathan K, Gioia P, Morin L (2014) Morlet Wavelet transformed holograms for numerical adaptive view-based reconstruction. In: Optics and Photonics for information processing VIII. https://doi.org/10.1117/12.2061588, vol 9216, p 92160G

  29. Viswanathan K, Gioia P, Morin L (2015) A framework for view-dependent hologram representation and adaptive reconstruction. In: Proceedings - international conference on image processing, ICIP. https://doi.org/10.1109/ICIP.2015.7351421, vol 2015, pp 3334–3338

  30. Wiegand T, Sullivan GJ, Bjøntegaard G, Luthra A (2003) Overview of the H.264/AVC video coding standard. IEEE Trans. Circuits Syst. Video Technol. 13(7):560–576. https://doi.org/10.1109/TCSVT.2003.815165

    Article  Google Scholar 

  31. Yue C, et al. (2018) An overview of core coding tools in the AV1 video codec, ieeexplore.ieee.org

  32. Zhang Q, Wang Y, Wei T, Huang L, Su R (2020) A Fast and Efficient 3d-HEVC Method for Complexity Reduction Based on the Correlations of Inter-View, Spatio-Temporal, and Texture-Depth. IEEE Access 8:129075–129086. https://doi.org/10.1109/ACCESS.2020.3009424

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Esmaeili Najafabadi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajihashemi, V., Najafabadi, H.E., Gharahbagh, A.A. et al. A novel high-efficiency holography image compression method, based on HEVC, Wavelet, and nearest-neighbor interpolation. Multimed Tools Appl 80, 31953–31966 (2021). https://doi.org/10.1007/s11042-021-11232-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11232-0

Keywords

Navigation