Skip to main content
Log in

Forwarding techniques for the global stabilization of dissipative infinite-dimensional systems coupled with an ODE

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

This paper deals with the stabilization of a coupled system composed by an infinite-dimensional system and an ODE. Moreover, the control, which appears in the dynamics of the ODE, is subject to a general class of nonlinearities. Such a situation may arise, for instance, when the actuator admits a dynamics. The open-loop ODE is exponentially stable and the open-loop infinite-dimensional system is dissipative, i.e., the energy is nonincreasing, but its equilibrium point is not necessarily attractive. The feedback design is based on an extension of a finite-dimensional method, namely the forwarding method. We propose some sufficient conditions that imply the well-posedness and the global asymptotic stability of the closed-loop system. As illustration, we apply these results in a transport equation coupled with an ODE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. This terminology is used in functional analysis to denote monotone operators. If \(m=1\), then \(\sigma \) is nondecreasing.

  2. See [38, Definition 11.1.1.] for a definition.

References

  1. Astolfi D, Marx N, van de Wouw N (2021) Repetitive control design based on forwarding for nonlinear minimum-phase systems. Automatica (to appear)

  2. Astolfi D, Praly L (2017) Integral action in output feedback for multi-input multi-output nonlinear systems. IEEE Trans Autom Control 62(4):1559–1574

    Article  MathSciNet  Google Scholar 

  3. Auriol J, Bribiesca-Argomedo F, Saba DB, Di Loreto M, Di Meglio F (2018) Delay-robust stabilization of a hyperbolic PDE-ODE system. Automatica 95:494–502

    Article  MathSciNet  Google Scholar 

  4. Barreau M, Seuret A, Gouaisbaut F, Baudouin L (2018) Lyapunov stability analysis of a string equation coupled with an ordinary differential system. IEEE Trans Autom Control 63(11):3850–3857

    Article  MathSciNet  Google Scholar 

  5. Baudouin L, Seuret A, Gouaisbaut F (2019) Stability analysis of a system coupled to a heat equation. Automatica 99:195–202

    Article  MathSciNet  Google Scholar 

  6. Benachour S, Andrieu V, Praly L, Hammouri H (2013) Forwarding design with prescribed local behavior. IEEE Trans Autom Control 58(12):3011–3023

    Article  MathSciNet  Google Scholar 

  7. Califano F, Macchelli A (2019) A stability analysis based on dissipativity of linear and nonlinear repetitive control. IFAC-PapersOnLine 52(2):40–45

    Article  MathSciNet  Google Scholar 

  8. Cerpa E (2014) Control of a Korteweg–de Vries equation: a tutorial. Math Control Relat Fields 4(1):45–99

    Article  MathSciNet  Google Scholar 

  9. Cerpa E, Coron JM (2013) Rapid stabilization for a Korteweg–de Vries equation from the left Dirichlet boundary condition. IEEE Trans Automat Control 58(7):1688–1695

    Article  MathSciNet  Google Scholar 

  10. Cerpa E, Crépeau E (2009) Rapid exponential stabilization for a linear Korteweg–de Vries equation. Discrete Contin Dyn Syst 11(3):655–668

    MathSciNet  MATH  Google Scholar 

  11. Cheverry C, Raymond N (2019) Handbook of Spectral Theory . https://hal.archives-ouvertes.fr/cel-01587623. Lecture

  12. Chitour Y, Marx S, Prieur C (2020) \({L}^{p}\)-asymptotic stability analysis of a 1d wave equation with a nonlinear damping. J Differ Equ 269(10):8107–8131

    Article  Google Scholar 

  13. Coron JM (2007) Control and nonlinearity. American Mathematical Society, Providence

    MATH  Google Scholar 

  14. Curtain R, Zwart H (1995) An introduction to infinite-dimensional systems theory. Springer, New York

    Book  Google Scholar 

  15. Daafouz J, Tucsnak M, Valein J (2014) Nonlinear control of a coupled pde/ode system modeling a switched power converter with a transmission line. Syst Control Lett 70:92–99

    Article  MathSciNet  Google Scholar 

  16. Feng H, Wu XH, Guo BZ (2020) Actuator dynamics compensation in stabilization of abstract linear systems. arXiv preprint arXiv:2008.11333

  17. Isidori A, Marconi L, Serrani A (2012) Robust autonomous guidance: an internal model approach. Springer, Berlin

    MATH  Google Scholar 

  18. Kaliora G, Astolfi A (2005) On the stabilization of feedforward systems with bounded control. Syst Control Lett 54(3):263–270

    Article  MathSciNet  Google Scholar 

  19. Kang W, Fridman E (2018) Boundary constrained control of delayed nonlinear Schrodinger equation. IEEE Trans Autom Control

  20. Krstic M, Smyshlyaev A (2008) Boundary control of PDEs: a course on backstepping designs. SIAM, Philadelphia

    Book  Google Scholar 

  21. Marx S, Andrieu V, Prieur C (2017) Cone-bounded feedback laws for \(m\)-dissipative operators on Hilbert spaces. Math Control Signals Syst 29(4):18

    Article  MathSciNet  Google Scholar 

  22. Marx S, Brivadis L, Astolfi D (2020) Forwarding design for stabilization of a coupled transport equation/ode with a cone-bounded input nonlinearity. In: Proceedings of the 59th IEEE conference on decision and control. Jeju Island

  23. Marx S, Cerpa E, Prieur C, Andrieu V (2017) Global stabilization of a Korteweg—de Vries equation with a saturating distributed control. SIAM J Control Optim 55(3):1452–1480

    Article  MathSciNet  Google Scholar 

  24. Marx S, Chitour Y, Prieur C (2020) Stability analysis of dissipative systems subject to nonlinear damping via Lyapunov techniques. IEEE Trans Autom Control 65(5):2139–2146

    Article  MathSciNet  Google Scholar 

  25. Mazenc F, Praly L (1996) Adding integrations, saturated controls, and stabilization for feedforward systems. IEEE Trans Autom Control 41(11):1559–1578

    Article  MathSciNet  Google Scholar 

  26. Miyadera I (1992) Nonlinear semigroups. Translations of mathematical monographs

  27. Paunonen L (2019) Stability and robust regulation of passive linear systems. SIAM J Control Optim 57(6):3827–3856

    Article  MathSciNet  Google Scholar 

  28. Paunonen L, Pohjolainen S (2010) Internal model theory for distributed parameter systems. SIAM J Control Optim 48(7):4753–4775

    Article  MathSciNet  Google Scholar 

  29. Pazy A (1983) Semigroups of linear operators and applications to partial differential equations. Springer, Berlin

    Book  Google Scholar 

  30. Phóng VQ (1991) The operator equation \({AX}- {XB}= {C}\) with unbounded operators \({A}\) and \({B}\) and related abstract Cauchy problems. Math Z 208(1):567–588

    Article  MathSciNet  Google Scholar 

  31. Prieur C, Tarbouriech S, da Silva Jr JMG (2016) Wave equation with cone-bounded control laws. IEEE Trans Autom Control 61(11):3452–3463

    Article  MathSciNet  Google Scholar 

  32. Russell DL (1978) Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions. SIAM Rev 20(4):639–739

    Article  MathSciNet  Google Scholar 

  33. Safi M, Baudouin L, Seuret A (2017) Tractable sufficient stability conditions for a system coupling linear transport and differential equations. Syst Control Lett 110:1–8

    Article  MathSciNet  Google Scholar 

  34. Slemrod M (1989) Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control. Math Control Signals Syst 2(3):847–857

    Article  MathSciNet  Google Scholar 

  35. Tang S, Xie C (2011) Stabilization for a coupled PDE-ODE control system. J Franklin Inst 348(8):2142–2155

    Article  MathSciNet  Google Scholar 

  36. Tarbouriech S, Garcia G, da Silva Jr JG, Queinnec I (2011) Stability and stabilization of linear systems with saturating actuators. Springer, Berlin

    Book  Google Scholar 

  37. Terrand-Jeanne A, Andrieu V, Martins VDS, Xu CZ (2019) Adding integral action for open-loop exponentially stable semigroups and application to boundary control of pde systems. IEEE Trans Autom Control

  38. Tucsnak M, Weiss G (2009) Observation and control for operator semigroups. Springer, Berlin

    Book  Google Scholar 

  39. Urquiza JM (2005) Rapid exponential feedback stabilization with unbounded control operators. SIAM J Control Optim 43(6):2233–2244

    Article  MathSciNet  Google Scholar 

  40. Weiss G, Häfele M (1999) Repetitive control of MIMO systems using h\(\infty \) design. Automatica 35(7):1185–1199

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the French Grant ANR ODISSE (ANR-19-CE48-0004-01) and was also conducted in the framework of the regional programme “Atlanstic 2020, Research, Education and Innovation in Pays de la Loire”, supported by the French Region Pays de la Loire and the European Regional Development Fund. Funding was provided by Atlanstic2020 (Grant No. LIMICOM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swann Marx.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marx, S., Brivadis, L. & Astolfi, D. Forwarding techniques for the global stabilization of dissipative infinite-dimensional systems coupled with an ODE. Math. Control Signals Syst. 33, 755–774 (2021). https://doi.org/10.1007/s00498-021-00299-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-021-00299-7

Keywords

Navigation