Skip to main content
Log in

Degenerate Riemann–Hilbert–Birkhoff problems, semisimplicity, and convergence of WDVV-potentials

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Alla cara memoria del mio Maestro, Boris Dubrovin

Abstract

In the first part of this paper, we give a new analytical proof of a theorem of C. Sabbah on integrable deformations of meromorphic connections on \({\mathbb P}^1\). This theorem generalizes a previous result of B. Malgrange to the case of connections admitting irregular singularities of Poincaré rank 1 with coalescing eigenvalues. In the second part of this paper, as an application, we prove that any semisimple formal Frobenius manifold (over \({\mathbb C}\)), with unit and Euler field, is the completion of an analytic pointed germ of a Dubrovin–Frobenius manifold. In other words, any formal power series, which provides a quasi-homogenous solution of WDVV equations and defines a semisimple Frobenius algebra at the origin, is actually convergent under no further tameness assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. A richer notion of complete CohFT on a given \((H,\eta )\) is also available, in which the datum is enriched to a family \((\Omega _{g,\mathfrak n})_{g,\mathfrak n}\) of k-linear tensors \(\Omega _{g,\mathfrak n}\in (H^*)^{\otimes \mathfrak n}\otimes _k H^\bullet (\overline{\mathcal M}_{g,\mathfrak n}; k)\), satisfying further compatibility properties, for any pair \((g,\mathfrak n)\) of non-negative integers in the stable range \(2g-2+\mathfrak n>0\). The prototypical example of a complete CohFT is provided by the Gromov–Witten theory of a smooth projective variety X. The corresponding formal Frobenius manifold attached to its genus zero sector is called quantum cohomology of X. See [51, 57] and Sect. 6 of this paper. Cohomological Field Theory

  2. Here \(\mathfrak S_n\) denotes the symmetric group on a finite set with n elements.

  3. I do not know any reference in the literature where a complete proof is given. I thank Yu.I. Manin for a friendly e-mail correspondence on this point. The current paper both recovers a proof of this known fact, and it also removes the tameness assumption.

  4. Given a formal Frobenius manifold, the system (1.1) has coefficients in \(M_n({\mathbb C}[\![\varvec{t}]\!])\). Hence, for \(t=0\), we have a well-defined differential system with coefficients in \(M_n({\mathbb C})\).

  5. Here, \({\mathbb C}\{\varvec{t}\}\) denotes the algebra of convergent power series in \(\varvec{t}\).

  6. We warn the reader that in the exposition of [57], the isomonodromic system (1.1) is replaced by a Fuchsian one obtained by applying a (formal) Laplace transform, see [57, Ch. II.§1-3].

  7. Recall that the index of a Fredholm operator T is the integer \(\mathrm{ind}\,T:=\dim \ker T-\dim \mathrm{coker}\,T\).

  8. For this standard algebraic approach to Lie derivatives of tensors, see, e.g.   [4].

  9. In what follows, the musical isomorphisms with respect to the metric \(\eta \) will be denoted by \((-)^\flat \) and \((-)^\sharp \), respectively. If \(\xi \in \Gamma (TM)\), the 1-form \(\xi ^\flat \in \Gamma (T^*M)\) is defined by \(\xi ^\flat (X)=\eta (X,\xi )\), where \(X\in \Gamma (TM)\). Conversely, if \(\xi \in \Gamma (T^*M)\), the vector field \(\xi ^\sharp \in \Gamma (TM)\) is uniquely defined by the identity \(\xi (X)=\eta (X,\xi ^\sharp )\), where \(X\in \Gamma (TM)\). Thus, \((-)^\flat :\Gamma (TM)\rightarrow \Gamma (T^*M)\) and \((-)^\sharp :\Gamma (T^*M)\rightarrow \Gamma (TM)\) are mutually inverse. In components, these operations are also known as “lowering” and “raising” indices, respectively. These operations naturally extend to mixed tensors.

  10. In fact, the resulting basis \((\pi _1',\ldots , \pi _n')\) is not just an \((h+1)\)-order idempotent, but even a \((2h+1)\)-order idempotent basis.

  11. This means that each \(\Delta _2,\ldots ,\Delta _{r+1}\) intersects every effective curve class \(\beta \in \mathrm{Eff(X)}\) non-negatively.

  12. Surely enough, such a list does not cover all the known cases of semisimple small quantum cohomologies available in the literature.

  13. These include the equations in Part I of our proof of Theorem 5.1.

References

  1. Anosov, D.V., Bolibruch, A.A.:The Riemann–Hilbert Problem, Asp. Math. E22, Vieweg, Braunschweig, vol. IX, p. 193 (1994)

  2. Arsie, A., Buryak, A., Lorenzoni, P., Rossi, P.: Semisimple flat \(F\)-manifolds in higher genus, pp. 1–48. arXiv:2001.05599 [math.AG]

  3. Arsie, A., Lorenzoni, P.: \(F\)-manifolds, multi-flat structures and Painlevé transcendents, pp. 1–69. arXiv:1501.06435v5 [math-ph]

  4. Abraham, R., Marsden, J.E., Ratiu, T.: Manifolds, Tensor Analysis, and Applications. Springer (1988)

  5. Basalaev, A., Buryak, A.: Open WDVV Equations and Virasoro Constraints. Arnold Math. J. 5, 145–186 (2019). doi: 10.1007/s40598-019-00115-w

    Article  MathSciNet  MATH  Google Scholar 

  6. Bayer, A., Manin, Y.I.: (Semi)simple exercises in quantum cohomology. In: Proceedings of the Fano conference, Univ. Torino, Turin, pp. 143–173 (2004)

  7. Benedetti, V., Manivel, l.: The small quantum cohomology of the Cayley Grassmannian, 19p. arXiv:1907.0751

  8. Bothner, T.: On the origins of Riemann–Hilbert problems in mathematics, 56p. arXiv:2003.14374

  9. Cotti, G., Dubrovin, B., Guzzetti, D.: Isomonodromy deformations at an irregular singularity with coalescing eigenvalues. Duke Math. J. 168(6), 967–1108 (2019). doi: 10.1215/00127094-2018-0059

    Article  MathSciNet  MATH  Google Scholar 

  10. Cotti, G., Dubrovin, B., Guzzetti, D.: Local moduli of semisimple Frobenius coalescent structures. Symmetry Integrability Geom. Methods Appl. 16, 040 (2020). doi: 10.3842/SIGMA.2020.040

    Article  MathSciNet  MATH  Google Scholar 

  11. Cotti, G., Dubrovin, B., Guzzetti, D.: Helix structures in quantum cohomology of Fano varieties, pp. 1–149. arXiv:1811.09235

  12. Clancey, K.F., Gohberg, I.: Factorization of matrix functions and singular integral operators, Operator Theory: Advances and Applications, vol. 3. Birkhäuser Verlag, Basel - Boston, Mass (1981)

    MATH  Google Scholar 

  13. Cotti G., Guzzetti, D.: Analytic Geometry of Semisimple Coalescent Frobenius Structures, Random Matrices Theory Appl. 6(4), 1740004, 36 pp (2017)

  14. G., Guzzetti, D.: Results on the Extension of Isomonodromy Deformations with a Resonant Irregular Singularity. Random Matrices Theory Appl. 07(4), 1840003, 27 pp (2018)

  15. Ciolli, G.: Computing the quantum cohomology of some Fano threefolds and its semisimplicity. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 7(2), 511–517 (2004)

  16. Ciolli, G.: On the quantum cohomology of some Fano threefolds and a conjecture of Dubrovin. Internat. J. Math. 16(8), 823–839 (2005)

    MathSciNet  MATH  Google Scholar 

  17. Coates, T., Iritani, H.: On the convergence of Gromov-Witten potentials and Givental’s formula. Michigan Math. J. 64(3), 587–631 (2015). doi: 10.1307/mmj/1441116660

    Article  MathSciNet  MATH  Google Scholar 

  18. Cox, D.A., Katz, S.: Mirror Symmetry and Algebraic Geometry, Mathematical Surveys and Monographs, vol. 68. Amer. Math. Soc, Providence, RI (1999)

    MATH  Google Scholar 

  19. Combe, N., Manin, Y.I.: \(F\)-manifolds and geometry of information. Bull. Lond. Math. Soc. 52, 777–792 (2020). doi: 10.1112/blms.12411

    Article  MathSciNet  MATH  Google Scholar 

  20. Cruz Morales, J.A., Mellit, A., Perrin, N., Smirnov, M.: On quantum cohomology of Grassmannians of isotropic lines, unfoldings of \(A_n\)-singularities, and Lefschetz exceptional collections. Ann. Inst. Fourier Grenoble 69(3), 955–991 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Chaput, P.-E., Manivel, L., Perrin, N.: Quantum cohomology of minuscule homogeneous spaces III?: semi-simplicity and consequences. Can. J. Math. 62(6), 1246–1263 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Cotti, G.: Quantum differential equations and helices, to appear in Geometric Methods in Physics XXXVIII. In: Kielanowski, P. et al. (eds.) Trends in Mathematics, 20p (2020). https://doi.org/10.1007/978-3-030-53305-2_3, arXiv:1911.11047

  23. Chaput, P.E., Perrin, N.: On the quantum cohomology of adjoint varieties. Proc. Lond. Math. Soc. 103(2), 294–330 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Dubrovin, B.: Integrable systems in topological field theory. Nuclear Phys. B 379, 627–689 (1992)

    ADS  MathSciNet  Google Scholar 

  25. Dubrovin, B.: Geometry of 2D topological field theories. In: Integrable Systems and Quantum Groups (Montecatini Terme: Lecture Notes in Math., vol. 1620. 1996, 120–348, Springer, Berlin (1993)

  26. Dubrovin, B.: Geometry and analytic theory of Frobenius manifolds, Doc. Math. (1998), extra Vol. II, 315– 326. arXiv:math.AG/9807034

  27. Dubrovin, B.: Painlevé transcendents in two-dimensional topological field theory. In: The Painlevé Property, pp. 287–412. Springer, New York, CRM Ser. Math. Phys (1999)

  28. Duren, P.L.: The Theory of \(H^p\) Spaces. Academic Press, New York and London (1970)

    MATH  Google Scholar 

  29. Dijkgraaf, R., Verlinde, H., Verlinde, E.: Topological strings in \(d < 1\). Nuclear Phys. B 352(1), 59–86 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Deift, P., Zhou, X.: Perturbation theory for infinite dimensional integrable systems on the line: a case study. Acta Math. 188, 163–262 (2002)

    MathSciNet  MATH  Google Scholar 

  31. Deift, P., Zhou, X.: A priori \(L^p\) estimates for solutions of Riemann-Hilbert problems. Int. Math. Res. Notices 40, 2121–2154 (2002)

    MATH  Google Scholar 

  32. Fokas, A.S., Its, A.R., Kapaev, A.A., Novokshenov, VYu.: Painlevé transcendents: The Riemann–Hilbert approach, Mathematical Surveys and Monographs, vol. 128. American Mathematical Society, Providence, RI (2006)

  33. Fokas, A.S., Zhou, X.: On the solvability of Painlevé \(II\) and \(IV\). Commun. Math. Phys. 144(3), 601–622 (1992)

    ADS  MATH  Google Scholar 

  34. Givental, A.: Gromov-Witten invariants and quantization of quadratic hamiltonians. Mosc. Math. J 1(4), 551–56 (2001)

    MathSciNet  MATH  Google Scholar 

  35. Galkin, S., Golyshev, V., Iritani, H.: Gamma classes and quantum cohomology of Fano manifolds: Gamma conjectures. Duke Math. J. 165(11), 2005–2077 (2016)

    MathSciNet  MATH  Google Scholar 

  36. Gohberg, I., Goldberg, S., Kaashoek, M.A.: Classes of Linear Operators I. Birkhäuser, Basel, Boston (1990)

    MATH  Google Scholar 

  37. Galkin, S., Mellit, A., Smirnov, M.: Dubrovin’s conjecture for \(IG(2, 6)\). Int. Math. Res. Not. 18,8847–8859 (2015)

    MathSciNet  MATH  Google Scholar 

  38. Gramsch, B.: Meromorphie in der Theorie der Fredholmoperatoren mit Anwendungen auf elliptische Differentialoperatoren. Math. Ann. 188, 97–112 (1970)

    MathSciNet  MATH  Google Scholar 

  39. Gohberg, I., Sigal, E.I.: An operator generalization of the logarithmic residue theorem and the theorem of Rouché. Math. USSR Sb. 13, 603–625 (1971)

    MATH  Google Scholar 

  40. Guzzetti, D.: Inverse problem and monodromy data for three-dimensional Frobenius manifolds. Math. Phys. Anal. Geom. 4, 245–291 (2001)

    MathSciNet  MATH  Google Scholar 

  41. Hertling, C.: Frobenius Manifolds and Moduli Spaces for Singularities, Cambridge Tracts in Mathematics, vol. 151. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  42. Hertling, C., Manin, Y.I.: Weak Frobenius manifolds. Int. Math. Res. Notices 6, 277–286 (1999). Preprint math.QA/9810132

  43. Hertling, C., Manin, Y.I., Teleman, C.: An update on semisimple quantum cohomology and F-manifolds. Tr. Mat. Inst. Steklova 264 (2009), Mnogomernaya Algebraicheskaya Geometriya, 69–76; translation in Proc. Steklov Inst. Math. 264 (2009), no. 1, 62–69

  44. Iritani, H.: Convergence of quantum cohomology by quantum Lefschetz. J. Reine Angew. Math. 610, 29–69 (2007)

    MathSciNet  MATH  Google Scholar 

  45. Its, A.R.: The Riemann-Hilbert problem and integrable systems. Not. Am. Math. Soc. 50(11), 1389–1400 (2003)

    MathSciNet  MATH  Google Scholar 

  46. Its, A.R.: Large \(N\) asymptotics in random matrices: the Riemann-Hilbert approach. In: Harnad, J. (ed.) Random Matrices. Random Processes and Integrable Systems. CRM Ser. Math. Phys, Springer, New York (2011)

    MATH  Google Scholar 

  47. Jimbo, M., Miwa, T., Ueno, K.: Monodromy preserving deformations of linear ordinary differential equations with rational coefficients I. Physica 2D, 306–352 (1981)

    ADS  MathSciNet  MATH  Google Scholar 

  48. Kaballo, W.: Meromorphic generalized inverses of operator functions. Indagationes Mathematicae 23(4), 970–994 (2012)

    MathSciNet  MATH  Google Scholar 

  49. Kedlaya, K.: Good formal structures for flat meromorphic connections, I: surfaces. Duke Math. J. 154(2), 343–418 (2010). arXiv:0811.0190

    MathSciNet  MATH  Google Scholar 

  50. Kedlaya, K.: Good formal structures for flat meromorphic connections, II: excellent schemes. J. Amer. Math. Soc. 24(1), 183–229 (2011). arXiv:1001.0544

    MathSciNet  MATH  Google Scholar 

  51. Kontsevich, M., Manin, Y.I.: Gromov-Witten classes, quantum cohomology, and enumerative geometry. Comm. Math. Phys. 164, 525–562 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  52. Lee, Y.P.: Quantum \(K\)-theory: foundations. Duke Math. J. 121(3), 389–424 (2004)

    MathSciNet  MATH  Google Scholar 

  53. Losev, A., Manin, Y.I.: Extended modular operad. In: Hertling, C., Marcolli, M. (eds.) Frobenius Manifolds, pp. 181–211. Vieweg & Sohn Verlag, Wiesbaden (2004)

    Google Scholar 

  54. Malgrange, B.: Déformations de systèmes différentiels et microdifférentiels. Séminaire E.N.S. Mathématique et Physique (L. Boutet de Monvel, A. Douady & J.-L. Verdier, eds.), Progress in Math., vol. 37, pp. 351–379. Birkhäuser, Basel, Boston (1983)

  55. Malgrange, B.: Sur les déformations isomonodromiques, II. Séminaire E.N.S. Mathématique et Physique. In: Boutet de Monvel, L., Douady, A., Verdier, J.-L. (eds.) Progress in Math., vol. 37, pp. 427–438. Birkhäuser, Basel, Boston (1983)

  56. Malgrange, B.: Deformations of differential systems. II. J. Ramanujan Math. Soc. 1, 3–15 (1986)

    MathSciNet  MATH  Google Scholar 

  57. Manin, Y.I.: Frobenius manifolds, Quantum Cohomology, and Moduli Spaces. Amer. Math. Soc, Providence, RI (1999)

    MATH  Google Scholar 

  58. Manin, Y.I.: \(F\)-manifolds with flat structure and Dubrovin’s duality. Adv. Math. 198(1), 5–26 (2005)

    MathSciNet  MATH  Google Scholar 

  59. Mochizuki, T.: Good formal structure for meromorphic flat connections on smooth projective surfaces, in Algebraic Analysis and Around (Kyoto, : Advanced Studies in Pure Math., vol. 54, Math. Soc. Japan, Tokyo 2009, 223–253 (June 2007). arXiv:0803.1346

  60. Mochizuki, T.: Wild Harmonic Bundles and Wild Pure Twistor \(D\)-modules, Astérisque, vol. 340. Société Mathématique de France, Paris (2011)

    MATH  Google Scholar 

  61. Mochizuki, T.: Stokes structure of a good meromorphic flat bundle. Journal de l’Institut mathématique de Jussieu 10(3), 675–712 (2011)

    MathSciNet  MATH  Google Scholar 

  62. Mochizuki, T.: Holonomic D-modules with Betti structure, Mém. Soc. Math. France (N.S.), vol. 138–139, Société Mathématique de France (2014). arXiv:1001.2336

  63. Mikhlin, S.G., Prössdorf, S.: Singular Integral Operators. Springer, New York (1980)

    MATH  Google Scholar 

  64. Muskhelishvili, N.I.; Singular Integral Equations. Woolters–Noordhoff Publishing (1972)

  65. Nowicki, A.: Commutative bases of derivations in polynomial and power series rings. J. Pure Appl. Algebra 40, 275–279 (1986)

    MathSciNet  MATH  Google Scholar 

  66. Pandharipande, R.: Cohomological field theory calculations. In: Proceedings of the International Congress of Mathematicians (ICM 2018). https://doi.org/10.1142/9789813272880_0031

  67. Perrin, N.: Semisimple quantum cohomology of some Fano varieties. arXiv:1405.5914

  68. Sabbah, C.: Équations différentielles à points singuliers irréguliers en dimension 2. Ann. Inst. Fourier (Grenoble) 43, 1619–1688 (1993)

    MathSciNet  MATH  Google Scholar 

  69. Sabbah, C.: Équations différentielles à points singuliers irréguliers et phénomène de Stokes en dimension 2, Astérisque, vol. 263. Société Mathématique de France, Paris (2000)

    MATH  Google Scholar 

  70. Sabbah, C.: Isomonodromic deformations and Frobenius manifolds, Universitext, Springer & EDP Sciences (2007) (in French: 2002)

  71. Sabbah, C.: Integrable deformations and degenerations of some irregular singularities, accepted for publication in Publ. RIMS Kyoto Univ. 35 p. arXiv:1711.08514v3

  72. Sardanashvily, G.: Lectures on Differential Geometry of Modules and Rings, Lambert Academic Publishing, Saarbrücken (2012). arXiv:0910.1515

    Google Scholar 

  73. Teleman, C.: The structure of \(2d\) semi-simple field theories. Inventiones Mathematicae 188(3), 525–588 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  74. Trogdon, T., Olver, S.: Riemann-Hilbert Problems, Their Numerical Solution, and the Computation of Nonlinear Special Functions. Society for Industrial and Applied Mathematics, SIAM), Philadelphia PA (2016)

    MATH  Google Scholar 

  75. Vekua, N.P.: Systems of singular integral equations, P. Noordhoff, Ltd., Groningen (1967). Translated from the Russian by A.G. Gibbs and G.M. Simmons. Edited by J.H. Ferziger

  76. Witten, E.: On the structure of the topological phase of two-dimensional gravity. Nuclear Phys. B 340(2–3), 281–332 (1990)

    ADS  MathSciNet  Google Scholar 

  77. Zhou, X.: The Riemann-Hilbert problem and inverse scattering. SIAM J. Math. Anal. 20(4), 966–986 (1989). doi: 10.1137/0520065

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Funding was provided by the Engineering and Physical Sciences Research Council (Grant No. EP/P021913/2), Hausdorff Research Institute for Mathematics (JTP Fellowship “New Trends in Representation Theory”), and by the Fundação para a Ciência e a Tecnologia, FCiências da Universidade de Lisboa (Grant No. PTDC/MAT-PUR/ 30234/2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giordano Cotti.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cotti, G. Degenerate Riemann–Hilbert–Birkhoff problems, semisimplicity, and convergence of WDVV-potentials. Lett Math Phys 111, 99 (2021). https://doi.org/10.1007/s11005-021-01427-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-021-01427-9

Keywords

Mathematics Subject Classification

Navigation