Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Immune-based therapies in cardiovascular and metabolic diseases: past, present and future

Abstract

Cardiometabolic disorders were originally thought to be driven primarily by changes in lipid metabolism that cause the accumulation of lipids in organs, thereby impairing their function. Thus, in the setting of cardiovascular disease, statins — a class of lipid-lowering drugs — have remained the frontline therapy. In the past 20 years, seminal discoveries have revealed a central role of both the innate and adaptive immune system in driving cardiometabolic disorders. As such, it is now appreciated that immune-based interventions may have an important role in reducing death and disability from cardiometabolic disorders. However, to date, there have been a limited number of clinical trials exploring this interventional strategy. Nonetheless, elegant preclinical research suggests that immune-targeted therapies can have a major impact in treating cardiometabolic disease. Here, we discuss the history and recent advancements in the use of immunotherapies to treat cardiometabolic disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Immune cell response and potential interventions following a primary myocardial infarction.
Fig. 2: Cardiometabolic risk factors that stimulate the haematopoietic system and potential therapeutic interventions.

Similar content being viewed by others

References

  1. Ross, R. Atherosclerosis–an inflammatory disease. N. Engl. J. Med. 340, 115–126 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Pearson, T. A. et al. AHA guidelines for primary prevention of cardiovascular disease and stroke: 2002 update: consensus panel guide to comprehensive risk reduction for adult patients without coronary or other atherosclerotic vascular diseases. American Heart Association Science Advisory and Coordinating Committee. Circulation 106, 388–391 (2002).

    Article  PubMed  Google Scholar 

  3. Greenland, P. et al. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 122, e584–e636 (2010).

    PubMed  Google Scholar 

  4. Arnett, D. K. et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 140, e596–e646 (2019).

    PubMed  PubMed Central  Google Scholar 

  5. Wolf, D. & Ley, K. Immunity and inflammation in atherosclerosis. Circ. Res. 124, 315–327 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hotamisligil, G. S., Shargill, N. S. & Spiegelman, B. M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259, 87–91 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Kubota, T. et al. Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-alpha. Circ. Res. 81, 627–635 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Aikawa, R. et al. Reactive oxygen species in mechanical stress-induced cardiac hypertrophy. Biochem. Biophys. Res. Commun. 289, 901–907 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Bradham, W. S., Bozkurt, B., Gunasinghe, H., Mann, D. & Spinale, F. G. Tumor necrosis factor-alpha and myocardial remodeling in progression of heart failure: a current perspective. Cardiovasc. Res. 53, 822–830 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Bozkurt, B. et al. Results of targeted anti-tumor necrosis factor therapy with etanercept (ENBREL) in patients with advanced heart failure. Circulation 103, 1044–1047 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Chung, E. S. et al. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation 107, 3133–3140 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Esser, N., Paquot, N. & Scheen, A. J. Anti-inflammatory agents to treat or prevent type 2 diabetes, metabolic syndrome and cardiovascular disease. Expert Opin. Investig. Drugs 24, 283–307 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Bernstein, L. E., Berry, J., Kim, S., Canavan, B. & Grinspoon, S. K. Effects of etanercept in patients with the metabolic syndrome. Arch. Intern. Med. 166, 902–908 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Branen, L. et al. Inhibition of tumor necrosis factor-alpha reduces atherosclerosis in apolipoprotein E knockout mice. Arterioscler. Thromb. Vasc. Biol. 24, 2137–2142 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Xanthoulea, S. et al. Absence of p55 TNF receptor reduces atherosclerosis, but has no major effect on angiotensin II induced aneurysms in LDL receptor deficient mice. PLoS One 4, e6113 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Dinarello, C. A., Renfer, L. & Wolff, S. M. Human leukocytic pyrogen: purification and development of a radioimmunoassay. Proc. Natl Acad. Sci. USA 74, 4624–4627 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shimokawa, H. et al. Chronic treatment with interleukin-1 beta induces coronary intimal lesions and vasospastic responses in pigs in vivo. The role of platelet-derived growth factor. J. Clin. Invest. 97, 769–776 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kirii, H. et al. Lack of interleukin-1beta decreases the severity of atherosclerosis in ApoE-deficient mice. Arterioscler. Thromb. Vasc. Biol. 23, 656–660 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Ridker, P. M. et al. Low-dose methotrexate for the prevention of atherosclerotic events. N. Engl. J. Med. 380, 752–762 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Nidorf, S. M. et al. Colchicine in patients with chronic coronary disease. N. Engl. J. Med. 383, 1838–1847 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Tardif, J. C. et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N. Engl. J. Med. 381, 2497–2505 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Kurup, R., Galougahi, K. K., Figtree, G., Misra, A. & Patel, S. The role of colchicine in atherosclerotic cardiovascular disease. Heart Lung Circ. 30, 795–806 (2021).

    Article  PubMed  Google Scholar 

  24. McInnes, I. B. & Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205–2219 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Williams, J. W., Huang, L. H. & Randolph, G. J. Cytokine circuits in cardiovascular disease. Immunity 50, 941–954 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Choy, E., Ganeshalingam, K., Semb, A. G., Szekanecz, Z. & Nurmohamed, M. Cardiovascular risk in rheumatoid arthritis: recent advances in the understanding of the pivotal role of inflammation, risk predictors and the impact of treatment. Rheumatology 53, 2143–2154 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kraakman, M. J., Dragoljevic, D., Kammoun, H. L. & Murphy, A. J. Is the risk of cardiovascular disease altered with anti-inflammatory therapies? Insights from rheumatoid arthritis. Clin. Transl Immunol. 5, e84 (2016).

    Article  CAS  Google Scholar 

  28. Rajavashisth, T. et al. Heterozygous osteopetrotic (op) mutation reduces atherosclerosis in LDL receptor- deficient mice. J. Clin. Invest. 101, 2702–2710 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Barnabe, C., Martin, B. J. & Ghali, W. A. Systematic review and meta-analysis: anti-tumor necrosis factor alpha therapy and cardiovascular events in rheumatoid arthritis. Arthritis Care Res. 63, 522–529 (2011).

    Article  CAS  Google Scholar 

  30. Cholesterol Treatment Trialists Collaboration. et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 376, 1670–1681 (2010).

    Article  CAS  Google Scholar 

  31. Nissen, S. E. et al. Statin therapy, LDL cholesterol, C-reactive protein, and coronary artery disease. N. Engl. J. Med. 352, 29–38 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Oesterle, A., Laufs, U. & Liao, J. K. Pleiotropic effects of statins on the cardiovascular system. Circ. Res. 120, 229–243 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Musunuru, K. et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature 593, 429–434 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Rothgangl, T. et al. In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-00933-4 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gaudelli, N. M. et al. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yeh, W. H., Chiang, H., Rees, H. A., Edge, A. S. B. & Liu, D. R. In vivo base editing of post-mitotic sensory cells. Nat. Commun. 9, 2184 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Charlesworth, C. T. et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat. Med. 25, 249–254 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li, A. et al. AAV-CRISPR gene editing is negated by pre-existing immunity to Cas9. Mol. Ther. 28, 1432–1441 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Momtazi-Borojeni, A. A. et al. PCSK9 and inflammation: a review of experimental and clinical evidence. Eur. Heart J. Cardiovasc. Pharmacother. 5, 237–245 (2019).

    Article  PubMed  Google Scholar 

  41. Pradhan, A. D., Aday, A. W., Rose, L. M. & Ridker, P. M. Residual inflammatory risk on treatment with PCSK9 inhibition and statin therapy. Circulation 138, 141–149 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Linsel-Nitschke, P. & Tall, A. R. HDL as a target in the treatment of atherosclerotic cardiovascular disease. Nat. Rev. Drug Discov. 4, 193–205 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Tall, A. R. & Rader, D. J. Trials and tribulations of CETP inhibitors. Circ. Res. 122, 106–112 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Fotakis, P. et al. Anti-inflammatory effects of HDL (high-density lipoprotein) in macrophages predominate over proinflammatory effects in atherosclerotic plaques. Arterioscler. Thromb. Vasc. Biol. 39, e253–e272 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Suzuki, M. et al. High-density lipoprotein suppresses the type I interferon response, a family of potent antiviral immunoregulators, in macrophages challenged with lipopolysaccharide. Circulation 122, 1919–1927 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nissen, S. E. et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA 290, 2292–2300 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Tardif, J. C. et al. Effects of reconstituted high-density lipoprotein infusions on coronary atherosclerosis: a randomized controlled trial. JAMA 297, 1675–1682 (2007).

    Article  PubMed  Google Scholar 

  48. Shaw, J. A. et al. Infusion of reconstituted high-density lipoprotein leads to acute changes in human atherosclerotic plaque. Circ. Res. 103, 1084–1091 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Nicholls, S. J. et al. Relationship between atheroma regression and change in lumen size after infusion of apolipoprotein A-I Milano. J. Am. Coll. Cardiol. 47, 992–997 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Murphy, A. J. et al. ApoE regulates hematopoietic stem cell proliferation, monocytosis, and monocyte accumulation in atherosclerotic lesions in mice. J. Clin. Invest. 121, 4138–4149 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Murphy, A. J. et al. Cholesterol efflux in megakaryocyte progenitors suppresses platelet production and thrombocytosis. Nat. Med. 19, 586–594 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Murphy, A. J. et al. High-density lipoprotein reduces the human monocyte inflammatory response. Arterioscler. Thromb. Vasc. Biol. 28, 2071–2077 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Murphy, A. J. et al. Neutrophil activation is attenuated by high-density lipoprotein and apolipoprotein A-I in in vitro and in vivo models of inflammation. Arterioscler. Thromb. Vasc. Biol. 31, 1333–1341 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Patel, S. et al. Reconstituted high-density lipoprotein increases plasma high-density lipoprotein anti-inflammatory properties and cholesterol efflux capacity in patients with type 2 diabetes. J. Am. Coll. Cardiol. 53, 962–971 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Nicholls, S. J. et al. Reconstituted high-density lipoproteins inhibit the acute pro-oxidant and proinflammatory vascular changes induced by a periarterial collar in normocholesterolemic rabbits. Circulation 111, 1543–1550 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Catapano, A. L., Pirillo, A., Bonacina, F. & Norata, G. D. HDL in innate and adaptive immunity. Cardiovasc. Res. 103, 372–383 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Westerterp, M. et al. Cholesterol accumulation in dendritic cells links the inflammasome to acquired immunity. Cell Metab. 25, 1294–1304.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dragoljevic, D. et al. Defective cholesterol metabolism in haematopoietic stem cells promotes monocyte-driven atherosclerosis in rheumatoid arthritis. Eur. Heart J. 39, 2158–2167 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rayner, K. J. et al. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J. Clin. Invest. 121, 2921–2931 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rayner, K. J. et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science 328, 1570–1573 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. van der Heijden, T. et al. NLRP3 inflammasome inhibition by MCC950 reduces atherosclerotic lesion development in apolipoprotein E-deficient mice-brief report. Arterioscler. Thromb. Vasc. Biol. 37, 1457–1461 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Menu, P. et al. Atherosclerosis in ApoE-deficient mice progresses independently of the NLRP3 inflammasome. Cell Death Dis. 2, e137 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Westerterp, M. et al. Cholesterol efflux pathways suppress inflammasome activation, NETosis, and atherogenesis. Circulation 138, 898–912 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sharma, A. et al. Specific NLRP3 inhibition protects against diabetes-associated atherosclerosis. Diabetes 70, 772–787 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Dinarello, C. A. Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol. 27, 519–550 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Sreejit, G. et al. Neutrophil-derived S100A8/A9 amplify granulopoiesis after myocardial infarction. Circulation 141, 1080–1094 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nagareddy, P. R. et al. Adipose tissue macrophages promote myelopoiesis and monocytosis in obesity. Cell Metab. 19, 821–835 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kraakman, M. J. et al. Blocking IL-6 trans-signaling prevents high-fat diet-induced adipose tissue macrophage recruitment but does not improve insulin resistance. Cell Metab. 21, 403–416 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Masters, S. L. et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1beta in type 2 diabetes. Nat. Immunol. 11, 897–904 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kammoun, H. L. et al. Evidence against a role for NLRP3-driven islet inflammation in db/db mice. Mol. Metab. 10, 66–73 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bick, A. G. et al. Genetic interleukin 6 signaling deficiency attenuates cardiovascular risk in clonal hematopoiesis. Circulation 141, 124–131 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Fidler, T. P. et al. The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis. Nature 592, 296–301 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fuster, J. J. et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 355, 842–847 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jaiswal, S. et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N. Engl. J. Med. 377, 111–121 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Sano, S. et al. CRISPR-mediated gene editing to assess the roles of Tet2 and Dnmt3a in clonal hematopoiesis and cardiovascular disease. Circ. Res. 123, 335–341 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Swirski, F. K. et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J. Clin. Invest. 117, 195–205 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yvan-Charvet, L. et al. ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science 328, 1689–1693 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, M. et al. Interleukin-3/granulocyte macrophage colony-stimulating factor receptor promotes stem cell expansion, monocytosis, and atheroma macrophage burden in mice with hematopoietic ApoE deficiency. Arterioscler. Thromb. Vasc. Biol. 34, 976–984 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kim, S. et al. Angiotensin II regulation of proliferation, differentiation, and engraftment of hematopoietic stem cells. Hypertension 67, 574–584 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Al-Sharea, A. et al. Chronic sympathetic driven hypertension promotes atherosclerosis by enhancing hematopoiesis. Haematologica 104, 456–467 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Daugherty, A., Manning, M. W. & Cassis, L. A. Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J. Clin. Invest. 105, 1605–1612 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Drummond, G. R., Vinh, A., Guzik, T. J. & Sobey, C. G. Immune mechanisms of hypertension. Nat. Rev. Immunol. 19, 517–532 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. Nagareddy, P. R. et al. Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis. Cell Metab. 17, 695–708 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kraakman, M. J. et al. Neutrophil-derived S100 calcium-binding proteins A8/A9 promote reticulated thrombocytosis and atherogenesis in diabetes. J. Clin. Invest. 127, 2133–2147 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Flynn, M. C. et al. Transient intermittent hyperglycemia accelerates atherosclerosis by promoting myelopoiesis. Circ. Res. 127, 877–892 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Barrett, T. J. et al. Apolipoprotein AI) promotes atherosclerosis regression in diabetic mice by suppressing myelopoiesis and plaque inflammation. Circulation 140, 1170–1184 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Distel, E. et al. miR33 inhibition overcomes deleterious effects of diabetes mellitus on atherosclerosis plaque regression in mice. Circ. Res. 115, 759–769 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mantelmacher, F. D. et al. GIP regulates inflammation and body weight by restraining myeloid-cell-derived S100A8/A9. Nat. Metab. 1, 58–69 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. Swirski, F. K. & Nahrendorf, M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science 339, 161–166 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Horckmans, M. et al. Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative phenotype. Eur. Heart J. 38, 187–197 (2017).

    CAS  PubMed  Google Scholar 

  92. Nagareddy, P. R. et al. NETosis is required for S100A8/A9-induced granulopoiesis after myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 40, 2805–2807 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Marinkovic, G. et al. Inhibition of pro-inflammatory myeloid cell responses by short-term S100A9 blockade improves cardiac function after myocardial infarction. Eur. Heart J. 40, 2713–2723 (2019).

    Article  CAS  PubMed  Google Scholar 

  94. Marinkovic, G. et al. S100A9 links inflammation and repair in myocardial infarction. Circ. Res. 127, 664–676 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. Savchenko, A. S. et al. VWF-mediated leukocyte recruitment with chromatin decondensation by PAD4 increases myocardial ischemia/reperfusion injury in mice. Blood 123, 141–148 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kyaw, T. et al. Alarmin-activated B cells accelerate murine atherosclerosis after myocardial infarction via plasma cell-immunoglobulin-dependent mechanisms. Eur. Heart J. 42, 938–947 (2020).

    Article  CAS  Google Scholar 

  97. Dutta, P. et al. Myocardial infarction accelerates atherosclerosis. Nature 487, 325–329 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Al-Sharea, A., Lee, M. K. S., Purton, L. E., Hawkins, E. D. & Murphy, A. J. The haematopoietic stem cell niche: a new player in cardiovascular disease? Cardiovasc. Res. 115, 277–291 (2019).

    Article  CAS  PubMed  Google Scholar 

  99. Al-Sharea, A. et al. Nicotinic acetylcholine receptor alpha 7 stimulation dampens splenic myelopoiesis and inhibits atherogenesis in Apoe-/- mice. Atherosclerosis 265, 47–53 (2017).

    Article  CAS  PubMed  Google Scholar 

  100. Parganas, E. et al. Jak2 is essential for signaling through a variety of cytokine receptors. Cell 93, 385–395 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Wang, W. et al. Macrophage inflammation, erythrophagocytosis, and accelerated atherosclerosis in Jak2 (V617F) mice. Circ. Res. 123, e35–e47 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Tang, Y. et al. Inhibition of JAK2 suppresses myelopoiesis and atherosclerosis in Apoe-/- mice. Cardiovasc. Drugs Ther. 34, 145–152 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lee, M. K. S. et al. Apoptotic ablation of platelets reduces atherosclerosis in mice with diabetes. Arterioscler. Thromb. Vasc. Biol. 41, 1167–1178 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Meyer, M. A. S. et al. Treatment effects of interleukin-6 receptor antibodies for modulating the systemic inflammatory response after out-of-hospital cardiac arrest (The IMICA Trial): a double-blinded, placebo-controlled, single-center, randomized, clinical trial. Circulation 143, 1841–1851 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kraakman, M. J. et al. Targeting gp130 to prevent inflammation and promote insulin action. Diabetes Obes. Metab. 15(Suppl. 3), 170–175 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Schreiber, S. et al. Therapeutic interleukin 6 trans-signaling inhibition by olamkicept (sgp130Fc) in patients with active inflammatory bowel disease. Gastroenterology 160, 2354–2366.e11 (2021).

    Article  CAS  PubMed  Google Scholar 

  107. Schuett, H. et al. Transsignaling of interleukin-6 crucially contributes to atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 32, 281–290 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Scheller, J. & Rose-John, S. The interleukin 6 pathway and atherosclerosis. Lancet 380, 338 (2012).

    Article  PubMed  Google Scholar 

  109. Taleb, S., Tedgui, A. & Mallat, Z. IL-17 and Th17 cells in atherosclerosis: subtle and contextual roles. Arterioscler. Thromb. Vasc. Biol. 35, 258–264 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Erbel, C. et al. Inhibition of IL-17A attenuates atherosclerotic lesion development in apoE-deficient mice. J. Immunol. 183, 8167–8175 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Smith, E. et al. Blockade of interleukin-17A results in reduced atherosclerosis in apolipoprotein E-deficient mice. Circulation 121, 1746–1755 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Danzaki, K. et al. Interleukin-17A deficiency accelerates unstable atherosclerotic plaque formation in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 32, 273–280 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Wu, D. et al. Efficacy and safety of interleukin-17 antagonists in patients with plaque psoriasis: a meta-analysis from phase 3 randomized controlled trials. J. Eur. Acad. Dermatol. Venereol. 31, 992–1003 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Rungapiromnan, W., Yiu, Z. Z. N., Warren, R. B., Griffiths, C. E. M. & Ashcroft, D. M. Impact of biologic therapies on risk of major adverse cardiovascular events in patients with psoriasis: systematic review and meta-analysis of randomized controlled trials. Br. J. Dermatol. 176, 890–901 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wu, C. et al. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature 496, 513–517 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kleinewietfeld, M. et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 496, 518–522 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Boring, L., Gosling, J., Cleary, M. & Charo, I. F. Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394, 894–897 (1998).

    Article  CAS  PubMed  Google Scholar 

  118. Obstfeld, A. E. et al. C-C chemokine receptor 2 (CCR2) regulates the hepatic recruitment of myeloid cells that promote obesity-induced hepatic steatosis. Diabetes 59, 916–925 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Weisberg, S. P. et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J. Clin. Invest. 116, 115–124 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Winter, C. et al. Chrono-pharmacological targeting of the CCL2-CCR2 axis ameliorates atherosclerosis. Cell Metab. 28, 175–182.e5 (2018).

    Article  CAS  PubMed  Google Scholar 

  121. Tacke, F. et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J. Clin. Invest. 117, 185–194 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Rahman, K. et al. Inflammatory Ly6Chi monocytes and their conversion to M2 macrophages drive atherosclerosis regression. J. Clin. Invest. 127, 2904–2915 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Koenen, R. R. et al. Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nat. Med. 15, 97–103 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Hultcrantz, M. et al. Risk and cause of death in patients diagnosed with myeloproliferative neoplasms in Sweden between 1973 and 2005: a population-based study. J. Clin. Oncol. 33, 2288–2295 (2015).

    Article  PubMed  Google Scholar 

  125. Kumagai, N. et al. Acute coronary syndrome associated with essential thrombocythemia. J. Cardiol. 54, 485–489 (2009).

    Article  PubMed  Google Scholar 

  126. Murphy, A. J. et al. Deficiency of ATP-binding cassette transporter B6 in megakaryocyte progenitors accelerates atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 34, 751–758 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Scheffer, M. G., Michiels, J. J., Simoons, M. L. & Roelandt, J. R. Thrombocythemia and coronary artery disease. Am. Heart J. 122, 573–576 (1991).

    Article  CAS  PubMed  Google Scholar 

  128. Machlus, K. R. et al. CCL5 derived from platelets increases megakaryocyte proplatelet formation. Blood 127, 921–926 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Maggi, P. et al. Effects of therapy with maraviroc on the carotid intima media thickness in HIV-1/HCV Co-infected patients. In Vivo 31, 125–131 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Piconi, S. et al. Maraviroc reduces arterial stiffness in PI-treated HIV-infected patients. Sci. Rep. 6, 28853 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Broxmeyer, H. E. et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J. Exp. Med. 201, 1307–1318 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Liles, W. C. et al. Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood 102, 2728–2730 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. Wang, J., Tannous, B. A., Poznansky, M. C. & Chen, H. CXCR4 antagonist AMD3100 (plerixafor): From an impurity to a therapeutic agent. Pharmacol. Res. 159, 105010 (2020).

    Article  CAS  PubMed  Google Scholar 

  134. Doring, Y. et al. Vascular CXCR4 limits atherosclerosis by maintaining arterial integrity: evidence from mouse and human studies. Circulation 136, 388–403 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Doring, Y. et al. CXCL12 derived from endothelial cells promotes atherosclerosis to drive coronary artery disease. Circulation 139, 1338–1340 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Doring, Y. et al. B-Cell-Specific CXCR4 protects against atherosclerosis development and increases plasma IgM levels. Circ. Res. 126, 787–788 (2020).

    Article  PubMed  CAS  Google Scholar 

  137. Fredman, G. et al. An imbalance between specialized pro-resolving lipid mediators and pro-inflammatory leukotrienes promotes instability of atherosclerotic plaques. Nat. Commun. 7, 12859 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Gerlach, B. D. et al. Resolvin D1 promotes the targeting and clearance of necroptotic cells. Cell Death Differ. 27, 525–539 (2020).

    Article  CAS  PubMed  Google Scholar 

  139. Brennan, E. P. et al. Lipoxins protect against inflammation in diabetes-associated atherosclerosis. Diabetes 67, 2657–2667 (2018).

    Article  PubMed  Google Scholar 

  140. Fredman, G. & Tabas, I. Boosting inflammation resolution in atherosclerosis: the next frontier for therapy. Am. J. Pathol. 187, 1211–1221 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Claria, J., Dalli, J., Yacoubian, S., Gao, F. & Serhan, C. N. Resolvin D1 and resolvin D2 govern local inflammatory tone in obese fat. J. Immunol. 189, 2597–2605 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Man, K. et al. The transcription factor IRF4 is essential for TCR affinity-mediated metabolic programming and clonal expansion of T cells. Nat. Immunol. 14, 1155–1165 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Shi, L. Z. et al. HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 208, 1367–1376 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Vasanthakumar, A. et al. Sex-specific adipose tissue imprinting of regulatory T cells. Nature 579, 581–585 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Huang, S. C. et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat. Immunol. 15, 846–855 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Huang, S. C. et al. Metabolic reprogramming mediated by the mTORC2-IRF4 signaling axis is essential for macrophage alternative activation. Immunity 45, 817–830 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Jha, A. K. et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42, 419–430 (2015).

    Article  CAS  PubMed  Google Scholar 

  148. Mills, E. L. et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167, 457–470.e13 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha. Nature 496, 238–242 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Palmieri, E. M. et al. Nitric oxide orchestrates metabolic rewiring in M1 macrophages by targeting aconitase 2 and pyruvate dehydrogenase. Nat. Commun. 11, 698 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Mills, E. L. et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556, 113–117 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Cordes, T. et al. Immunoresponsive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels. J. Biol. Chem. 291, 14274–14284 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ip, W. K. E., Hoshi, N., Shouval, D. S., Snapper, S. & Medzhitov, R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science 356, 513–519 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sarrazy, V. et al. Disruption of glut1 in hematopoietic stem cells prevents myelopoiesis and enhanced glucose flux in atheromatous plaques of ApoE–/– mice. Circ. Res. 118, 1062–1077 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Dumont, A., Lee, M., Barouillet, T., Murphy, A. & Yvan-Charvet, L. Mitochondria orchestrate macrophage effector functions in atherosclerosis. Mol. Asp. Med. 77, 100922 (2021).

    Article  CAS  Google Scholar 

  156. van den Berg, S. M. et al. Blocking CD40-TRAF6 interactions by small-molecule inhibitor 6860766 ameliorates the complications of diet-induced obesity in mice. Int. J. Obes. 39, 782–790 (2015).

    Article  CAS  Google Scholar 

  157. Seijkens, T. T. P. et al. Targeting CD40-induced TRAF6 signaling in macrophages reduces atherosclerosis. J. Am. Coll. Cardiol. 71, 527–542 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Chatzigeorgiou, A. et al. Blocking CD40-TRAF6 signaling is a therapeutic target in obesity-associated insulin resistance. Proc. Natl Acad. Sci. USA 111, 2686–2691 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Cipollone, F. et al. Preprocedural level of soluble CD40L is predictive of enhanced inflammatory response and restenosis after coronary angioplasty. Circulation 108, 2776–2782 (2003).

    Article  CAS  PubMed  Google Scholar 

  160. Fu, Q. et al. A novel function of platelets and CD40L in NAFLD-promoted HCC development. J. Immunol. 200 (Suppl. 1), 56.16 (2018).

    Google Scholar 

  161. Ma, C. et al. NAFLD causes selective CD4+ T lymphocyte loss and promotes hepatocarcinogenesis. Nature 531, 253–257 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ma, K. et al. CTLA4-IgG ameliorates homocysteine-accelerated atherosclerosis by inhibiting T-cell overactivation in apoE–/– mice. Cardiovasc. Res. 97, 349–359 (2013).

    Article  CAS  PubMed  Google Scholar 

  163. Kang, E. H. et al. Comparative cardiovascular risk of abatacept and tumor necrosis factor inhibitors in patients with rheumatoid arthritis with and without diabetes mellitus: a multidatabase cohort study. J. Am. Heart Assoc. 7, e007393 (2018).

    PubMed  PubMed Central  Google Scholar 

  164. Vanrenterghem, Y. et al. Belatacept-based regimens are associated with improved cardiovascular and metabolic risk factors compared with cyclosporine in kidney transplant recipients (BENEFIT and BENEFIT-EXT studies). Transplantation 91, 976–983 (2011).

    Article  CAS  PubMed  Google Scholar 

  165. Drobni, Z. D. et al. Association between immune checkpoint inhibitors with cardiovascular events and atherosclerotic plaque. Circulation 142, 2299–2311 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Calabretta, R. et al. Immune checkpoint inhibitor therapy induces inflammatory activity in large arteries. Circulation 142, 2396–2398 (2020).

    Article  CAS  PubMed  Google Scholar 

  167. Poels, K. et al. Antibody-mediated inhibition of CTLA4 aggravates atherosclerotic plaque inflammation and progression in hyperlipidemic mice. Cells 9, 1987 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  168. Poels, K. et al. Immune checkpoint inhibitor therapy aggravates T cell-driven plaque inflammation in atherosclerosis. J. Am. Coll. Cardiol. CardioOncol. 2, 599–610 (2020).

    Google Scholar 

  169. Ley, K. & Roy, P. Blind Spot: 18F-FDG PET Fails to reveal atherosclerosis aggravated by cancer immunotherapy. J. Am. Coll. Cardiol. CardioOncol. 2, 611–613 (2020).

    Google Scholar 

  170. Kondapalli, L., Bottinor, W. & Lenneman, C. By releasing the brakes with immunotherapy, are we accelerating atherosclerosis? Circulation 142, 2312–2315 (2020).

    Article  CAS  PubMed  Google Scholar 

  171. Todoric, J. et al. Fructose stimulated de novo lipogenesis is promoted by inflammation. Nat. Metab. 2, 1034–1045 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Mason, K. D. et al. Programmed anuclear cell death delimits platelet life span. Cell 128, 1173–1186 (2007).

    Article  CAS  PubMed  Google Scholar 

  173. Oieni, J. et al. Nano-Ghosts: biomimetic membranal vesicles, technology and characterization. Methods 177, 126–134 (2020).

    Article  CAS  PubMed  Google Scholar 

  174. Zhao, Z., Ukidve, A., Kim, J. & Mitragotri, S. Targeting strategies for tissue-specific drug delivery. Cell 181, 151–167 (2020).

    Article  CAS  PubMed  Google Scholar 

  175. Kanarek, N., Petrova, B. & Sabatini, D. M. Dietary modifications for enhanced cancer therapy. Nature 579, 507–517 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.A.F. is supported by a Senior Principal Research Fellowship of the National Health & Medical Research Council (NHMRC) of Australia (APP1116936) and an NHMRC Investigator grant (APP1194141). A.J.M. is supported by a CSL Centenary Award and an NHMRC Investigator grant (APP1194329).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to the writing and revision of the article. A.J.M. prepared the draft figures that were used as a guide for the final images.

Corresponding authors

Correspondence to Andrew J. Murphy or Mark A. Febbraio.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Immunology thanks K. Moore, F. Swirski and C. Weber for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murphy, A.J., Febbraio, M.A. Immune-based therapies in cardiovascular and metabolic diseases: past, present and future. Nat Rev Immunol 21, 669–679 (2021). https://doi.org/10.1038/s41577-021-00580-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-021-00580-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing