Skip to main content
Log in

Numerical investigations of dynamic stall characteristics with laminar-to-turbulence transition

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

The influence of laminar-to-turbulence transition of the laminar separation bubble (LSB) on the dynamic stall process of a pitching foil was investigated using transition SST k-ω turbulence model. As the LSB moves to the leading edge, the strong strain rate produces a pronounced laminar-to-turbulence transition, resulting in a turbulent mixing, faster turbulent reattachment, and shrinkage of LSB. This transition leads to the enhancement of the friction coefficient after the reattachment point and delays the suction collapse and evolution of secondary vortex. A baseline SST k-ω model was also applied. Without the transition mechanism, the suction collapse occurs too early, and the downstroke relaminarization is absent. The oscillation of the downstroke lift curve is severer using the SST model than that using the transition SST model. This study extends the detailed validations of transition model and helps improve the understanding of the influence of the transition on the dynamic stall process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

C :

Chord length

C f :

Skin friction coefficient

C N :

Normal force coefficient

C P :

Pressure coefficient

C p * :

Normalized pressure coefficient

C P, min :

Minimum value of pressure coefficient

D k :

Sink term of turbulent kinetic energy

E Y :

Sink term of intermittency

I :

Turbulence intensity

k :

Turbulent kinetic energy

k f :

Reduced frequency

p :

Pressure

P k :

Source terms of turbulent kinetic energy

P t :

Turbulent production term

P Y :

Source term of intermittency

Re :

Reynolds number

Re v :

Vorticity Reynolds number

Re θ :

Momentum-thickness Reynolds number

Re θc :

Critical momentum-thickness Reynolds number

Re θt :

Transition onset momentum thickness Reynolds number

Re θt :

Transition momentum-thickness Reynolds number

R T :

Local eddy-to-laminar viscosity ratio

S :

Magnitude of strain rate

S ij :

Strain rate tensor

t :

Time

References

  1. J. A. Ekaterinaris and M. F. Platzer, Computational prediction of airfoil dynamic stall, Proc. of Progress in Aerospace Science, 33(11) (1998) 759–846.

    Article  Google Scholar 

  2. S. Wang, D. B. Ingham, L. Ma, M. T. Pourkashanian and Z. Tao, Turbulence modeling of deep dynamics stall at relatively low Reynolds number, Journal of Fluids and Structures, 33 (2012) 191–209.

    Article  Google Scholar 

  3. C. C. Tseng and Y. E. Cheng, Numerical investigations of the vortex interactions for a flow over a pitching foil at different stages, Journal of Fluids and Structures, 58 (2015) 291–318.

    Article  Google Scholar 

  4. W. J. McCroskey, L. W. Carr and K. W. McAlister, Dynamic stall experiments on oscillating airfoils, AIAA Journal, (14) (1976) 57–63.

  5. L. W. Carr, K. W. McAlister and W. J. McCroskey, Analysis of the Development of Dynamic Stall based on Oscillating Airfoil Experiments, NASA Technical Note 94035 (1977).

  6. J. G. Leishman, Dynamic stall experiments on the NACA23012 aerofoil, Experiments in Fluids, 9(9) (1990) 49–58.

    Article  Google Scholar 

  7. K. W. McAlister, L. W. Carr and W. J. McCroskey, Dynamic Stall Experiments on the NACA0012 Airfoil, NASA Technical Paper 1100 (1978).

  8. S. Wang, D. B. Ingham, L. Ma, M. T. Pourkashanian and Z. Tao, Numerical investigations on dynamic stall of low Reynolds number flow around oscillating airfoils, Computers and Fluids, 39(9) (2010) 1529–1541.

    Article  Google Scholar 

  9. C. K. Kang, H. Aono, Y. S. Baik, L. P. Bernal and W. Shyy, Fluid dynamics of pitching and plunging flat plate at intermediate Reynolds numbers, AIAA Journal, 51(2) (2012) 315–329.

    Article  Google Scholar 

  10. X. Zhang and J. U. Schlüter, Numerical study of the influence of the Reynolds number on the lift created by a leading edge vortex, Physics of Fluids, 24 (2012).

  11. A. C. Houdhry, R. Leknys, M. Arjomandi and R. Kelso, An insight into the dynamic stall lift characteristics, Experimental Thermal and Fluid Science, 58 (2014) 188–208.

    Article  Google Scholar 

  12. P. G. Choudhuri and D. Knight, Effects of compressibility, pitch rate, and Reynolds number on unsteady incipient leading-edge boundary layer separation over a pitching airfoil, Journal of Fluid Mechanics, 308 (1996) 195–218.

    Article  Google Scholar 

  13. K. M. Swift, An experimental analysis of the laminar separation bubble at low reynolds numbers, Master Thesis, University of Tennessee, Knoxville (2009).

  14. Z. F. Yang, F. L. Haan and H. Hui, An experimental investigation on the flow separation on a low-Reynolds-number airfoil, Proc. of 45th Aerospace Sciences Meeting and Exhibit, USA (2007) 2007–0275.

  15. M. R. Visbal, Analysis of the onset of dynamic stall using high-fidelity large-eddy simulations, Proc. of 52nd Aerospace Sciences Meeting, USA (2014) 2014–0591.

  16. R. R. Ramsay, M. J. Hoffman and G. M. Gregorek, Effects of grit roughness and pitch oscillations on the S809 airfoil, Airfoil Performance Report (1995).

  17. R. R. Ramsay and G. M. Gregorek, Effects of Grit Roughness and Pitch Oscillations on the S813 Airfoil, Airfoil Performance Report (1999).

  18. W. Shyy, Y. Lian, J. Tang, D. Viieru and H. Liu, Aerodynamics of Low Reynolds Number Flyers, Cambridge University Press, New York, USA (2007) 1–158.

    Google Scholar 

  19. G. Martinat, M. Braza, Y. Hoarau and G. Harran, Turbulence modeling of the flow past a pitching NACA0012 airfoil at 105 and 106 Reynolds numbers, Journal of Fluids and Structures, 24 (2008) 1294–1303.

    Article  Google Scholar 

  20. K. A. Ahmad, M. Z. Abdullah and J. K. Watterson, Numerical modeling of a pitching foil, Journal Mekanika, 30 (2010) 37–47.

    Google Scholar 

  21. M. A. Sohail and R. Ullah, CFD of oscillating airfoil pitch cycle by using PISO algorithm, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 5(12) (2011) 2660–2664.

    Google Scholar 

  22. C. Velkova, M. Todorov, I. Dobrev and F. Massouh, Approach for numerical modeling of airfoil dynamic stall, Proc. of Conference BulTrans-2012, Sozopol, Bulgaria (2012) 1–6.

  23. T. Lee and P. Gerontakos, Investigation of flow over an oscillating airfoil, Journal of Fluid Mechanics, 512 (2004) 313–341.

    Article  Google Scholar 

  24. F. Geng, I. Kalkman, A. S. J. Suiker and B. Blocken, Sensitivity analysis of airfoil aerodynamics during pitching motion at a Reynolds number of 1.35×105, Journal of Wind Engineering and Industrial Aerodynamics, 183 (2018) 315–332.

    Article  Google Scholar 

  25. K. M. Almohammadi, D. B. Ingham, L. Ma and M. Pourkashanian, Modeling dynamic stall of a straight blade vertical axis wind turbine, Journal of Fluids and Structures, 57 (2015) 144–158.

    Article  Google Scholar 

  26. I. Tani, Low speed flows involving bubble separations, Proc. of Progress in Aerospace Sciences, 5 (1964) 70–103.

    Article  Google Scholar 

  27. M. M. O’Meara and T. J. Mueller, Laminar separation bubble characteristics on an airfoil at low Reynolds numbers, AIAA Journal, 25(8) (1987) 1033–1041.

    Article  Google Scholar 

  28. F. R. Menter, R. B. Langtry and S. Völker, Transition modeling for general purpose CFD codes, Flow, Turbulence and Combustion, 77(1–4) (2006) 277–303.

    Article  Google Scholar 

  29. A. Razieaha, H. Montazeri and B. Blocken, On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines, Energy, 180 (2019) 838–857.

    Article  Google Scholar 

  30. R. Lanzafame, S. Mauro and M. Messina, 2D CFD modeling of H-Darrieus wind turbines using a transition turbulence model, Energy Procedia, 45 (2014) 131–140.

    Article  Google Scholar 

  31. A. Razieaha, I. Kalkman and B. Blocken, Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine, Applied Energy, 197 (2017) 132–150.

    Article  Google Scholar 

  32. D. M. Sharma, Experimental investigations of dynamic stall for an oscillating airfoil, Ph.D. Thesis, Department of the Aerospace Engineering, Indian Institute of Technology, India (2010).

    Google Scholar 

  33. D. M. Sharma and K. Poddar, Investigation of dynamic stall characteristics for flow past an oscillating at various reduced frequencies by simultaneous PIV and surface pressure measurements, Proc. of 10th International Symposium on Particle Image Velocimetry, Netherlands (2013).

  34. ANSYS, 3D Simulation Software, ANSYS, Inc., Canonsburg, PA, USA (2020).

    Google Scholar 

  35. I. B. Celik, Introductory Trbulence Modeling, Lecture Notes, West Virginia University, USA (1999).

    Google Scholar 

  36. W. Shyy, S. S. Thakur, H. Ouyang, J. Liu and E. Blosch, Computational Techniques for Complex Transport Phenomena, Cambridge University Press, New York, USA (2005).

    MATH  Google Scholar 

  37. V. J. Ingen, The eN method for transition prediction, Historical review of work at TU Delft, Proc. of 38th Fluid Dynamics Conference and Exhibit, Fluid Dynamics and Co-located Conferences, Washington, USA (2008).

  38. C. Seyfert and A. Krumbein, Comparison of a local correlation-based transition model with an eN-method for transition, New Results in Numeral Experimental Fluid Mechanics VIII (2013) 541–548.

  39. R. B. Langtry and F. R. Menter, Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes, AIAA Journal, 47(12) (2009) 2894–2906.

    Article  Google Scholar 

  40. F. R. Menter, T. Esch and S. Kubacki, Transition modelling based on local variables, Proc. of 5th International Symposiumon Engineering Turbulence Modelling and Measurements, Spain (2002) 555–564.

  41. R. B. Langtry and F. R. Menter, Transition modeling for general CFD applications in aeronautics, Proc. of 43rd AIAA Aerospace Sciences Meeting and Exhibit, USA (2005) 2005–0522.

  42. G. B. Schubauer and P. S. Klebanoff, Contribution on the Mechanics of Boundary Layer Transition, NACA Technical Report 1289 (1955).

  43. F. R. Menter, R. B. Langtry, S. R. Likki, Y. B. Suzen, P. G. Huang and S. Völker, A correlation based transition model using local variables, part 1: Model formulation, Journal of Turbomachinery, 128 (2006) 413–422.

    Article  Google Scholar 

  44. R. B. Langtry, F. R. Menter, S. R. Likki, Y. B. Suzen, P. G. Huang and S. Völker, A correlation based transition model using local variables, part 2: Test cases and industrial applications, Journal of Turbomachinery, 128 (2006) 423–434.

    Article  Google Scholar 

  45. W. J. McCroskey, The Phenomenon of Dynamic Stall, NASA Technical Memo 81264 (1981).

  46. A. D. Gardner, K. Richter, H. Mai, A. R. M. Altmikus, A. Klein and C. H. Rohardt, Experimental investigation of dynamic stall performance for the EDI-M109 and EDI-M112 airfoils, Journal of American Helicopter Society, 58(1) (2013) 1–13.

    Article  Google Scholar 

  47. S. V. Patankar and D. B. Spalding, A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, International Journal of Heat and Mass Transfer, 15(10) (1972) 1787–1806.

    Article  Google Scholar 

  48. Y. Y. Niu and M. S. Liou, Numerical simulation of dynamic stall using an improved advection upwind splitting method, AIAA Journal, 37(11) (1999) 1386–1392.

    Article  Google Scholar 

  49. S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Taylor and Francis, Oxfordshire, United Kingdom (1980).

    MATH  Google Scholar 

  50. T. N. Nandi, J. G. Brasseur and G. Vijayakumarm, Prediction and analysis of the nonsteady transition and separation processes on an oscillating wind turbine airfoil using the y-Reθ transition model, Proc. of 34th Wind energy Symposium, California, USA (2016).

  51. G. N. Barakos and D. Drikakis, Unsteady separated flows over manoeuvring lifting surfaces, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 358(1777) (2000) 3279–3291.

    Article  MathSciNet  Google Scholar 

  52. J. H. Almutairi, Large-eddy simulation of flow around an airfoil at low Reynolds number near stall, Ph.D. Thesis, School of Engineering Sciences, Southampton University, United Kingdom (2010).

    Google Scholar 

  53. D. K. Walters and D. Cokljat, A three-equation eddy-viscosity model for Reynolds-averaged Navier-Stokes simulations of transitional flow, Journal of Fluids Engineering, 130 (12) (2008).

  54. W. X. Yuan and M. Khalid, An investigation of low-Reynolds-number flows past airfoils, Proc. of 23rd AIAA Applied Aerodynamics Conference, Toronto, Canada (2005).

  55. M. Miozzi, A. Capone, M. Costantini, L. Fratto, C. Klein and F. Di Felice, Skin friction and coherent structures within a laminar separation bubble, Experiments in Fluids, 60 (2019) 13.

    Article  Google Scholar 

  56. H. R. Karbasian and K. C. Kim, Numerical investigations on flow structure and behavior of vortices in the dynamic stall of an oscillating pitching hydrofoil, Ocean Engineering, 127 (2016) 200–211.

    Article  Google Scholar 

  57. T. B. Gatski, C. L. Rumsey and R. Manceau, Current trends in modeling research for turbulent aerodynamic flows, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1859) (2007) 2389–2418.

    Article  MathSciNet  Google Scholar 

  58. F. R. Menter and M. Kuntz, Adaptation of eddy-viscosity tubulence models to unsteady separated flow behind vehicles, The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains (2004) 339–352.

  59. H. Gharali and D. A. Johnson, Dynamic stall simulation of a pitching airfoil under unsteady freestream velocity, Journal of Fluids and Structures, 42 (2013) 228–244.

    Article  Google Scholar 

  60. Y. Amini, B. Kianmehr and H. Emdad, Dynamic stall simulation of a pitching hydrofoil near free surface by using the volume of fluid method, Ocean Engineering, 192 (2019) 106553.

    Article  Google Scholar 

Download references

Acknowledgments

The present efforts are partially supported by the Ministry of Science and Technology in Taiwan, R.O.C. with project number 105-2221-E-110-040.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-Chou Tseng.

Additional information

Chien-Chou Tseng is an Associate Professor of the Department of Mechanical Engineering, National Cheng Kung University, Tainan, R.O.C. He received his Ph.D. from University of Michigan. His research interests in CFD and two-phase flow.

Ping-Ben Liu is a Ph.D. student of the Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung, R.O.C. His research interests in CFD and fluid-structure interaction.

Sheng-Yen Hsu is an Associate Professor of the Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung, R.O.C. He received his Ph.D. from Case Western Reserve University. His research interests in CFD and thermal fluids.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tseng, CC., Liu, PB. & Hsu, SY. Numerical investigations of dynamic stall characteristics with laminar-to-turbulence transition. J Mech Sci Technol 35, 3455–3468 (2021). https://doi.org/10.1007/s12206-021-0718-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-021-0718-6

Keywords

Navigation