Skip to main content

Advertisement

Log in

IoT Data Replication and Consistency Management in Fog Computing

  • Published:
Journal of Grid Computing Aims and scope Submit manuscript

Abstract

Fog Computing has emerged as a virtual platform extending Cloud services down to the network edge especially (and not exclusively) to host IoT applications. Data replication strategies have been designed to investigate the best storage location of data copies in geo-distributed storage systems in order to reduce its access time for different consumer services spread over the infrastructure. Unfortunately, due to the geographical distance between Fog nodes, misplacing data in such an infrastructure may generate high latencies when accessing or synchronizing replicas, thus degrading the Quality of Service (QoS). In this paper, we present two strategies to manage IoT data replication and consistency in Fog infrastructures. Our strategies choose for each datum, the right replica number and their location in order to reduce data access latency and replicas synchronization cost. This is done while respecting the required consistency level. Also, we propose an evaluation platform based on the simulator iFogSim to enable users to implement and test their own strategies for IoT data replication and consistency management. Our experiments show that when using our strategies, the service latency can be reduced by 30% in case of small Fog infrastructures and by 13% in case of large scale Fog infrastructures compared to iFogStor, a state-of-the-art strategy that does not use replication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kertesz, A., Pflanzner, T., Gyimothy, T.: A mobile IoT device simulator for IoT-fog-cloud systems. J. Grid Comput. 17, 529–551 (2019). https://doi.org/10.1007/s10723-018-9468-9

    Article  Google Scholar 

  2. Kochovski, P., Stankovski, V., Gec, V., et al.: Smart contracts for service-level agreements in edge-to-cloud computing. J Grid Comput 18, 673–690 (2020). https://doi.org/10.1007/s10723-020-09534-y

    Article  Google Scholar 

  3. Ghobaei-Arani, M., Souri, A., Rahmanian, A.: Resource management approaches in fog computing: A comprehensive review. J Grid Comput 18, 1–42 (2020). https://doi.org/10.1007/s10723-019-09491-1

    Article  Google Scholar 

  4. Horwitz, L.: The future of iot miniguide: The burgeoning iot market continues Cisco (2019)

  5. Tunable consistency in cassandra, http://cassandra.apache.org/doc/latest/architecture/dynamohttp://cassandra.apache.org/doc/latest/architecture/dynamo, Accessed: 2020-03-09

  6. Tyleckova, E., Noskievicova, D.: The role of big data in industry 4.0 in mining industry in serbia, System Safety: Human - Technical Facility - Environment. https://doi.org/10.2478/czoto-2020-0020 (2020)

  7. Sarkar, S., Chatterjee, S., Misra, S.: Assessment of the suitability of fog computing in the context of internet of things. IEEE Trans Cloud Comput PP (99), pp 1–1. https://doi.org/10.1109/TCC.2015.2485206(2015)

  8. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the internet of things. In: MCC ’12: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computingaugust, pp. 13–16 https://doi.org/10.1145/2342509.2342513 (2012)

  9. Coutinho, A., Greve, F., Prazeres, C., Cardoso, J.: Fogbed: A rapid-prototyping emulation environment for fog computing. In: IEEE International Conference on Communications (ICC), IEEE, pp. 1–7 (2018)

  10. Ascigil, O., Phan, T.K., Tasiopoulos, A.G., Sourlas, V., Psaras, I., Pavlou, G.: On uncoordinated service placement in edge-clouds. In: IEEE International Conference on Cloud Computing Technology and Science (CloudCom), pp. 41–48. https://doi.org/10.1109/CloudCom.2017.46 (2017)

  11. Skarlat, O., Nardelli, M., Schulte, S., Dustdar, S.: Towards qos-aware fog service placement. In: IEEE 1st International Conference on Fog and Edge Computing (ICFEC), pp. 89–96. https://doi.org/10.1109/ICFEC.2017.12 (2017)

  12. Taneja, M., Davy, A.: Resource aware placement of iot application modules in fog-cloud computing paradigm. In: IFIP/IEEE Symposium on Integrated Network and Service Management (IM), pp. 1222–1228. https://doi.org/10.23919/INM.2017.7987464 (2017)

  13. Xia, Y., Etchevers, X., Letondeur, L., Coupaye, T., Desprez, F.: Combining hardware nodes and software components ordering-based heuristics for optimizing the placement of distributed iot applications in the fog. In: Proceedings of the 33rd Annual ACM Symposium on Applied Computing, SAC ’18, pp. 751–760. https://doi.org/10.1145/3167132 (2018)

  14. Daneshfar, N., Pappas, N., Polishchuk, V., Angelakis, V.: Service allocation in a mobile fog infrastructure under availability and qos constraints. In: IEEE Global Communications Conference (GLOBECOM), IEEE, pp. 1–6 (2018)

  15. Yousefpour, A., Patil, A., Ishigaki, G., Kim, I., Wang, X., Cankaya, H. C., Zhang, Q., Xie, W., Jue, J. P.: QoS-aware dynamic fog service provisioning. arXiv:1802.00800(2018)

  16. Naas, M., Raipin, P., Boukhobza, J., Lemarchand, L.: iFogStor: an IoT data placement strategy for fog infrastructure. In: IEEE 1st International Conference on Fog and Edge Computing, Madrid, Spain, pp. 97–104, https://doi.org/10.1109/ICFEC.2017.15 (2017)

  17. Naas, M., Boukhobza, J., Raipin, P., Lemarchand, L.: An extension to ifogsim to enable the design of data placement strategies. In: 2nd IEEE International Conference on Fog and Edge Computing, ICFEC, Washington DC, pp. 1–8. https://doi.org/10.1109/CFEC.2018.8358724 (2018)

  18. Naas, M., Lemarchand, L., Boukhobza, J., Raipin, P.: A graph partitioning-based heuristic for runtime iot data placement strategies in a fog infrastructure. In: Proceedings of the 33rd Annual ACM Symposium on Applied Computing, SAC, Pau, France. pp 767–774. https://doi.org/10.1145/3167132.3167217(2018)

  19. Aral, A., Ovatman, T.: A decentralized replica placement algorithm for edge computing. IEEE Trans Netw Serv Manag 15(2), 516–529 (2018). https://doi.org/10.1109/TNSM.2017.2788945

    Article  Google Scholar 

  20. Ozeer, U., Etchevers, X., Letondeur, L., Ottogalli, F.-G., Sala¨un, G., Vincent, J.-M.: Resilience of stateful iot applications in a dynamic fog environment. In: Proceedings of the 15th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, pp. 332–341 (2018)

  21. Mayer, R., Gupta, H., Saurez, E., Ramachandran, U.: Fogstore: Toward a distributed data store for fog computing. arXiv:1709.07558 (2017)

  22. Goel, S., Buyya, R.: Data replication strategies in wide-area distributed systems. In: Enterprise Service Computing: From Concept to Deployment, pp. 211–241 (2007)

  23. Xie, J., Qian, C., Guo, D., Li, X., Shi, S., Chen, H.: Efficient data placement and retrieval services in edge computing. In: 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), pp. 1029–1039. https://doi.org/10.1109/ICDCS.2019.00106 (2019)

  24. Huang, T., Lin, W., Li, Y., He, L., Peng, S.: A latency-aware multiple data replicas placement strategy for fog computing. J. Signal Process. Syst. 91(10), 1191–1204 (2019)

    Article  Google Scholar 

  25. Balachandar, S.R., Kannan, K.: A new heuristic approach for the large-scale generalized assignment problem. Int. J. Math. Comput. Phys. Elect. Comput. Eng. 3, 969–974 (2009)

    Google Scholar 

  26. Gupta, H., Vahid Dastjerdi, A., Ghosh, S., Buyya, R.: iFogSim: A toolkit for modeling and simulation of resource management techniques in internet of things, edge and fog computing environments, ArXiv e-print (2016)

  27. Verter, V.: Uncapacitated and capacitated facility location problems (2011)

  28. Wu, X.: Data sets replicas placements strategy from cost-effective view in the cloud. Scientific Programming (2016)

  29. Bermbach, D., Kuhlenkamp, J.: Consistency in distributed storage systems. In: Gramoli, V., Guerraoui, R. (eds.) Networked Systems (2013)

  30. Kemme, B., Ramalingam, G., Schiper, A., Shapiro, M., Vaswani, K.: Consistency in distributed systems (dagstuhl seminar 13081). In: Dagstuhl Reports, Vol. 3, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2013)

  31. Adve, S.V., Gharachorloo, K.: Shared memory consistency models: a tutorial. Computer 29 (12) (1996)

  32. Shapiro, M., Bieniusa, A., Pregui̧ca, N., Balegas, V., Meiklejohn, C.: Just-right consistency: reconciling availability and safety. arXiv:1801.06340 (2018)

  33. Bermbach, D., Tai, S.: Eventual consistency: How soon is eventual? an evaluation of amazon s3’s consistency behavior (2011)

  34. Marianov, V., Serra, D.: Median Problems in Networks. Foundations of location analysis, pp 39–59. Springer, Boston (2011)

    Book  Google Scholar 

  35. Kariv, O., Hakimi, S. L.: An algorithmic approach to network location problems. i: The p-centers. SIAM J. Appl. Math. 37(3), 513–538 (1979)

    Article  MathSciNet  Google Scholar 

  36. Floyd, R.W.: Algorithm 97: Shortest path. Commun. ACM 5(6), 345 (1962). https://doi.org/10.1145/367766.368168

    Article  Google Scholar 

  37. Avella, P., Sassano, A.: On the p-median polytope. Math. Program. 89(3), 395–411 (2001)

    Article  MathSciNet  Google Scholar 

  38. Kariv, O., Hakimi, S.L.: An algorithmic approach to network location problems II: The p-Medians. SIAM J. Appl. Math. 37(3), 539–560 (1979)

    Article  MathSciNet  Google Scholar 

  39. Ibm ilog cplex optimization toolkit, http://www-03.ibm.com/software/products/en/ibmilogcp-leoptistudhttp://www-03.ibm.com/software/products/en/ibmilogcp-leoptistud, Accessed: 2017-09-20

  40. Rabinovich, M., Lazowska, E.D.: An efficient and highly available read-one write-all protocol for replicated data management. In: [1993] Proceedings of the Second International Conference on Parallel and Distributed Information Systems, pp. 56–65. https://doi.org/10.1109/PDIS.1993.253072 (1993)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jalil Boukhobza.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naas, M.I., Lemarchand, L., Raipin, P. et al. IoT Data Replication and Consistency Management in Fog Computing. J Grid Computing 19, 33 (2021). https://doi.org/10.1007/s10723-021-09571-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10723-021-09571-1

Keywords

Navigation